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PREFACE 
 
 The ability to accurately predict future outcomes of complex systems, such as military 
operations, business markets and national economies, has been the goal of forecasters for decades.  
The field is rich with sophisticated methods taken from high technology disciplines, e.g., the 
Kalman filter taken from control theory, [19].  However, these methods have done little to replace 
forecasts using human judgment by people knowledgeable in their field.  It is apparent that, if a 
computer could do better over a long period of time, the sophisticated methods would be highly 
recommended, and their developers would be wealthy.  Evidently, this is not the case. 
 

 Engineering systems are certainly very complex.  But to most engineers the major objective 
is building a control system.  In this case, the imbedded prediction systems are rarely broken out as 
separate models.  This is because typical engineering problems require tight-loop control, where the 
time constants are short between observations (typically sensor inputs) and control outputs.  In this 
problem space, prediction is embodied in a single step model, handled implicitly by the solution to a 
set of differential equations.  As we will show in the technical discussions below, explicit prediction 
models are left out and estimation techniques, e.g., Kalman Filtering are used to resolve the 
statistical error. 
 

 Single step models are sufficient when the system dynamics may be assumed stationary.  
However, this assumption may not be valid for problems that require predicting multiple steps into 
the future.  In these cases, one finds that control theory does not deal very well (if at all) with multi-
step prediction.  However, as certain control systems become more sophisticated, one starts to 
realize that the embedded prediction system becomes the critical part of the solution.  Based upon 
years of experience with such problems, it became apparent that an extension to the theory is 
needed.  The extended theory provided here covers multi-step prediction, using a new approach to 
nonstationary systems, particularly those that heretofore depended upon human judgment, e.g., air 
traffic control or power grid control.  This extension highlights the significant difference between 
estimation and prediction, a concern not normally found in engineering disciplines.  This extension 
effectively elevates prediction theory as a distinct discipline. 
 

 Einstein did much work using the theories of physics, mathematics, and probability.  He also 
understood the methods of statistics.  He knew how and where each could be applied to help solve 
the problem of predicting an event quite far into the future.  Most important, he had the ability to 
perceive the underlying structure of physical systems, and could represent these structures using 
models of their dynamics.  And this ability, to model the underlying structure of a system - to a 
sufficient level of accuracy - lies at the heart of the prediction problem. 
 

 In order to increase accuracy of prediction, one must be able to apply additional information.  
This additional information does not have to come from observation data.  In fact, it should come 
from knowledge of how a system operates internally, with all the inherent feedback loops, and the 
external factors that influence it.  Specifically, it comes from knowing how factors act as leading 
forces that can be observed in advance of the system's response.  This implies modeling how the 
inertial properties of one entity may affect those of another, and how the corresponding feedback 
effects can produce highly nonlinear responses.  Without an approach that can characterize inertial 
properties whose time constants are sufficiently long, there is effectively no chance of predicting 
future responses with useful accuracy. 
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MODELING PHYSICAL SYSTEMS 
 

 One of the major differences between Einstein’s approach to the theory of relativity and that 
of other researchers, e.g. Poincaré, was the selection of the space used to define and solve the 
problem.  Most every other researcher was using a pair of spaces, e.g., free space and ether (to 
which Einstein did not relate), or dual coordinate systems, x, y, z, t and x', y', z', t'.  Einstein derived 
his theory based on the physical properties of the system using a single x, y, z, t space. 
 

 According to Lorentz, Einstein used the physical interpretation of the Lorentz 
transformation the basis for a clear and simple discussion of the electrodynamics of moving bodies, 
whereas Poincaré's remarks on the physical interpretation of the Lorentz transformed quantities 
apparently struck Lorentz as inconsequential philosophical asides in expositions that otherwise 
closely followed his own.  Lorentz found Einstein's physically very intuitive approach more 
appealing than Poincaré's rather abstract but mathematically elegant approach. 
 

 Prediction Systems, Inc. (PSI), has always used the expression “modeling along physical 
lines.”  This goes back to the days when we were competing with companies that were modeling 
similar - if not the same - communication systems.  Some of these competitors used mathematical 
approaches, e.g., queuing theory based on probabilistic models.  A few were using special 
simulation languages, e.g., SIMSCRIPT or GPSS, both of which used a Discrete Event approach, a 
significant theoretical improvement - but poorly implemented (each ran very slow).  Additionally, 
neither were amenable to handling large numbers of mobile nodes, nor modeling radio systems 
where connectivity (who could talk to who) was constantly changing the network structure (which 
nodes were connected).  Most engineering groups were using FORTRAN or languages based on 
FORTRAN.  These ended up causing unwanted mathematical abstractions 
 

 The problem of building structural (versus statistical) models is currently being faced by 
practitioners who are trying to produce more accurate forecasts.  The problem stems from the most 
difficult task of translating knowledge of a system’s structure into a model, and the subsequent 
difficulties in verification and validation of executable computer code.  Because of these 
difficulties, many forecasters fall back on statistical approaches, fitting the data with mathematical 
functions that get extrapolated into the future. 
 

 In contrast, PSI has always worked to directly model the physical elements of a system that 
were required to achieve sufficient accuracy of the measures of merit (performance or effectiveness) 
that had to be produced.  This invariably leads to building models that follow the actual design or 
physics of the system being modeled.  Models are built that represent sufficient detail to produce the 
level of accuracy required for the measures of merit.  To run on parallel processors, independent 
modules must be designed that follow the inherent parallelism of the system being modeled.  These 
models are then easy to understand, build, and change (one can add more detail as needed).  By 
closely representing the physical system, models naturally run very fast (time-wasting mathematical 
abstractions and transformations are eliminated). 
 

 After studying existing simulation languages and their faults, and the requirement to run 
very fast on parallel processors, a new language environment was developed.  Another requirement 
was the ability for subject area experts, e.g., communication engineers, to build the models directly.  
This implied that the language had to read like English.  There is no relationship between the 
readability of the user language and the run-time speed.  It does require extremely complex 
language translators and a run-time system that is generated automatically based upon the 
architecture of independent modules.  But this burden falls on the computer. 
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 So how does one teach and implement a structural modeling approach if it is so difficult to 
comprehend conceptually, and so difficult to apply in practice?  There are no articles or textbooks to 
help people - even those with an excellent math background - to create such models successfully. 
 

 There are three sides to solving this problem.  One side is the need for special education.  
The academic environment must look at prediction theory as an interdisciplinary field.  Probably the 
most difficult problem to be overcome is assimilation of the model building process used by 
physical scientists doing worst-case design of complex systems.  Many of the fallacies that 
econometricians invoked when attempting to apply control theory to economics are explained well 
by Athans and Kendrick, [2].  These problems were also pointed out quite vehemently by Kalman 
himself, [19].  It is this author’s belief that attempts to apply control theory must be preceded by an 
understanding of discrete event systems.  This is the most important ingredient to achieving 
accurate predictions of nonlinear nonstationary systems.  Maybe then the academic community can 
gain a sufficiently deep understanding of the underlying aspects of complex systems to deal with 
prediction theory. 
 

 The second side of the problem is the need for a unified theory to support a scientific 
approach to evaluating and comparing prediction methods and techniques.  This need is amplified 
by the numerous attempts to compare forecasting methods, and the amount of literature - whose 
validity is questionable - consumed by the ensuing argumentation.  The foundation for such a theory 
must be based on broad principles that are widely accepted in the scientific community as 
representing invariant facts about the real world.  One can argue that these principles already exist.  
In fact, it is the thesis of this book that, by properly unifying the relevant existing theories of the 
physical sciences, a much clearer picture of the problem and its general solutions can be painted.  
This should also pave the way for the educational process. 
 

 The third side of the problem is the availability of tools to automate the model building 
process in a way that makes the development of prediction systems significantly easier to 
implement.  These tools must also afford the model builder the ability to keep pushing complexity 
into the background, as he verifies and validates pieces of his model.  Since 1982, this has been a 
major goal of this author.  The result is embodied in VisiSoft, a Computer-Aided Design (CAD) 
system in which subject area experts can easily build very accurate discrete event, and discrete or 
continuous time - models and simulations, as well as complex software.  VisiSoft contains many 
facilities for developing interactive software, high resolution graphical interfaces, file and 
communication channel interfaces, and libraries as well as nonlinear optimization facilities to 
develop complex models, simulations, and real-time control systems.  The interactive CAD 
developer interface is the Visual Development Environment (VDE). 
 

 The resulting VisiSoft product is much more than a language.  It is an environment that 
includes additional features required for complex simulations.  It includes the Run-Time Graphics 
(RTG) system, where end users interact with systems graphically - while they are running.  It also 
includes a non-linear optimization facility that is used to optimize parameters for accuracy of 
prediction and for adaptive real-time control systems. 
 

 A unified prediction theory, supported by advanced tools and a proper education is the only 
way that problems requiring multi-step prediction can be solved.  The ability to accurately predict 
outcomes depends upon the inherent properties of the system itself.  Given that these properties 
exist, people must be trained and armed to take full advantage of opportunities to accurately predict 
and control their future.  This book is an attempt to set out in that direction. 
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1. INTRODUCTION 
 
 Figure 1-1 is a simple illustration of a control system.  In the problems of interest, the 
control system may contain a large number of observable inputs provided by many sources.  In 
certain cases, these inputs may be processed by human intelligence to help make decisions on 
controlling the system.  Once a plan (a sequence of control inputs) is made, the corresponding 
control actions are promulgated down to the subordinate people or systems to be carried out. 
 

CONTROL OUTPUTS

SYSYEM
BEING

CONTROLLED
CONTROL INPUTS

OBSERVED RESPONSE

UNOBSERVABLE
INPUTS

OBSERVABLE
INPUTS

EXTERNAL FACTORS
INFLUENCING
SYSTEM RESPONSE:
         OBSERVABLE
         UNOBSERVABLE

CONTROL  01/19/06

OBSERVABLE
INPUTS

CONTROL
SYSTEM

OBSERVED
RESPONSE

 
 

Figure 1-1.  Simplified representation of a control system. 
 
 
 The plan that is promulgated is effectively the same as the optimal control sequence put 
out by the controller in a classical control system.  Given desired objectives, the control system is 
constantly producing a sequence of parameters in real time that are used as controlling inputs to 
the system.  However, in our case, the system may be distributed as well as require multiple 
prediction steps into the future. 
 
 
The Embedded Prediction Component Of A Control System 
 
 The sophisticated part of most control systems is the embedded prediction subsystem.  
This is characterized generically in Figure 1-2.  The prediction subsystem takes in a selected 
control sequence and observable inputs up to the current time T, and produces a prediction of the 
resulting system response out to some desired T+τ.  To accomplish this, the prediction system 
must contain models that represent all of the complexities required to produce the predicted 
outcomes with sufficient accuracy to support the desired control inputs and desired system 
outputs.  Our focus here is on nonstationary systems that require multi-step prediction. 
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Figure 1-2.  The embedded prediction component of a control system. 
 
 Sufficient accuracy of prediction depends upon the needs of the control system.  For 
example, a household thermostat uses a simple estimate of the current temperature to turn on or 
turn off the heater.  There is no prediction required.  Similarly, a person planning a two-week trip 
to a distant part of the world wants to know the temperature range and typical rainfall during the 
period of interest so that the proper clothes can be packed to cover the range of possibilities.  
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  This does not require a dynamic prediction model; a statistical estimate will suffice.  
However, a trip with no change of clothes may require an accurate prediction of weather.  This is 
best obtained from a dynamic meteorological forecasting model for the area of interest.  Such 
models can be quite complex. 
 

 Figure 1-2 provides a rough illustration of the required elements of a prediction model.  
The ovals represent the critical data spaces required to produce accurate estimates of prior, 
current and predicted states.  It is the selection and representation of these complex spaces that 
support the design of algorithms that determine the accuracy of predicted responses.  The 
importance of the design of these spaces cannot be over emphasized. 
 

 For nonstationary systems requiring accurate prediction models, one may use discrete 
event simulation and interactive graphics (a huge topic described elsewhere including many PSI 
and VSI documents).  In this case, the control system produces sets of control sequences to the 
prediction system and gets back corresponding sets of predicted system responses.  The optimal 
control problem is to come up with the control sequence that meets the constraints required of 
the system while optimizing some prescribed objective function.  In the ensuing discussion, we 
will use the words solution, control sequence, and desired outcome or desired output 
interchangeably. 
 
Prediction Versus Forecasting 
 
 When attempting to make decisions relative to best control actions, one wants to know 
what the outcomes would be for each potential control action selected.  An example is tracking 
the seismic behavior of a volcano and trying to determine if and when to evacuate surrounding 
communities.  Evacuation will cause a major disruption; but without an evacuation, many lives 
may be lost.  When dealing with such problems, one will be trying to postulate the actions and 
reactions that will determine the best control actions to take.  Predictions and forecasts are made 
to support the analysis and decision process that precedes control actions. 
 
 If sufficient data and time exist, then a prediction can be made with the accuracy 
characterized.  If not, one must make a forecast.  When decisions are critical, particularly if life 
and death are at stake, it is important to understand the difference between prediction and 
forecasting to avoid misleading statements and corresponding results. 
 
 As defined here, predictions can only be made when the accuracy of the prediction 
mechanism can be characterized in terms of historic data used to compare a priori predicted 
outcomes to the actual outcomes.  A priori is italicized because once one has seen the outcomes, 
any changes to the prediction mechanism will generally require re-characterization of the error 
using data that has not been seen.  This point is critical and is discussed further in the next 
section.   If one cannot perform such a characterization, then one is making a forecast. 
 
 As defined here, the difference between prediction and forecasting is independent of the 
prediction mechanism.  One may use human instincts to make predictions.  As long as the error 
associated with the instinctive prediction mechanism can be characterized on a consistent basis 
statistically, confidence levels on the error can be produced.  On the other hand, one can use 
large quantities of historic data to optimize coefficients in a sophisticated mathematical model 
that generates future outcomes without characterizing the error.  This is a forecast based upon 
modeling error - further described below. 
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 If there is no history data, one cannot characterize prediction error, and therefore one 
must make forecasts.  This is true when new problems are being addressed that may not fit the 
existing prediction mechanism.  In these cases, one must determine whether the changing 
situation still fits the prediction mechanism, or whether it is time to drop the error 
characterization and confidence statements and go with a forecast.  This determination is 
relatively easy to do when the prediction mechanism is a mathematical model driven by 
mechanically quantified measured data.  This becomes difficult when characterizing prediction 
error based upon human instinct. 
 

 In Chapter 7, we will indicate a method for combining forecasts and predictions to 
produce a prediction.  This method will rely on the characterization of worst case outcomes, i.e., 
outcomes that occur based upon worst case conditions.  In effect, we can condition probability 
statements using parametric worst cases. 
 
The Prediction Problem 
 

 Prediction of future outcomes of systems must be couched in terms of probability 
statements.  In fact, they are conditional probability statements.  For example, one can predict 
whether or not it will rain tomorrow in Point Pleasant, on the coast of New Jersey, as follows: 

 
First Prediction:  Given the historic data on rainy days in Point Pleasant for the past 20 
years, one can predict the probability of rain by dividing the number of rainy days by the 
total number of days.  If the number of rainy days for the past 20 years (7300 days) was 
730, then the probability of rain tomorrow (or any day for that matter) is 10%.  This is a 
statistical estimate based upon historic data. 
 
Second Prediction:  Given the number of rainy days in each month in Point Pleasant for 
the past 20 years, one can make separate predictions of the probability of rain for each 
month.  For example, one might say that - if the month is July, then the probability of rain 
is 5%; - if the month is November, then the probability of rain is 15%.  This is also a 
statistical estimate based upon historic data. 
 
Third Prediction:  Using knowledge of the weather patterns around the coast of New 
Jersey, one can generally rely upon the fronts moving from west to east.  Given 
knowledge about a rainstorm heading toward Point Pleasant from Pennsylvania, one can 
predict the probability of rain over the next 24 hours in 6 hour increments.  For example, 
one might say that the probability of rain is less than 2% over the next 6 hours.  It is 25% 
for the following 6 hours.  It continues to rise to 95% in the period 13 to 18 hours from 
now, and then falls off to 65% in 19 to 24 hours.  This requires a dynamic prediction 
model. 
 

 All of these predictions may contain valid probability statements based upon historic 
measurements.  However, the accuracy of each is obviously different.  The difference in 
accuracy is determined by the conditioning of the probability statement.  The first prediction is 
conditioned only upon the number of rainy days in a year, with no additional information.  The 
second prediction is conditioned upon additional information, i.e., the number of rainy days in 
each month of the year.  It will be a more accurate statement.  The third prediction is conditioned 
upon a dynamic model of weather patterns.  This model contains much more information than 
the other two, and is much more accurate. 
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 Predictions are statements of probability of the outcome of a future event.  In general, 
they are conditional probability statements, i.e., they are conditioned upon the information used 
to compute the probability.  The more information one can use to condition the probability 
statement, the more accurate the prediction.\ 
 
Human Judgment Versus Automation 
 
 The general prediction problem is to produce a sufficiently accurate prediction given the 
time frame and resources at one’s disposal.  As indicated above, predictions are probability 
statements that are conditioned on all of the information one can obtain.  Mathematical 
formulation is not as important as having additional information and correctly quantifying the 
prediction error. 
 
 The classic example of additional information is that of the salesman who knows little 
about mathematics and uses a computer spread sheet to organize his forecasts of sales volumes 
of product lines for the next quarter.  The numbers come from his head.  The marketing 
department gets independent sales forecasts from a set of PhD statisticians who use various 
sophisticated statistical approaches and historic data to forecast the same sales volumes.  Why 
does the salesman consistently come up with a much more accurate forecast?  He has more 
information about what’s going on in the market! 
 
 As indicated above, predictions are conditioned probability statements.  Modelers that 
incorporate more information into their model will produce more accurate predictions.  This 
information need not be in the form of historic data.  It is likely that the most important 
information is knowledge about the structure of the system.  That’s why the salesman does 
better.  He knows what is happening in the market (his system).  If he’s good, he has intelligence 
on what’s changing.  Are some new stores opening in two months that will be buying?  Are some 
existing clients about to shut down?  He has a more accurate model in his head than the 
statistician who is manipulating historic data with time-series models. 
 
 This does not imply that we cannot build a model on the computer that incorporates the 
salesman’s knowledge.  In fact, we can generate probability statements conditioned on that 
knowledge.  If we had 100 territories each with a salesman, we could build one model with 100 
instances and get them to enter their knowledge and then roll up the results - automatically.  Can 
we get them to cooperate?  Yes, if we can improve their accuracy and still make it easy for them 
to enter their knowledge.  These are the practical problems that must be dealt with, and the 
questions that must be answered. 
 
 
Drawing The Line Between Human Judgment And Automation 
 
 How do we decide what’s best for a human to do versus using a computer?  This problem 
has been addressed for many years in the field of CAD.  One must answer the questions: What 
processes depend upon - or are best left to - human judgment?  Where are the break points where 
computers do better?  The answer to this question generally comes down to time.  Given the 
requirement to achieve a given quality of results and objectives, e.g., being able to meet specified 
accuracy requirements, how much time will it take to get to the desired accuracy? 
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 When building tools to help people solve design problems or make complex planning 
decisions, time enters into the picture in two major ways. 
 

• Development Time - the time it takes to develop a tool that can be used to automate 
what was heretofore done using human judgment.  This does not necessarily eliminate 
human judgment as an override. 

 

• Solution Time - the time it takes to get useful solutions from an automated tool.  For 
systems of interest here, this generally implies getting a fast response - in real time. 

 
 Both of these times depend upon the state of technology.  However, there are general 
principles that apply when trying to decide upon an approach.  These principles assume 
agreement upon the quality or reliability requirements, as well as the development time and 
solution time requirements.  For complex applications, particularly those involving extreme 
reliability requirements, one must go through a careful learning process to establish accurate 
assessments of these times.  This often involves an evolutionary approach, where parts of a 
system are automated while others evolve more slowly.  This usually saves time in the end. 
 
 Figure 1-3 provides an illustration of how the level of automation achieved tends to grow 
over time in various applications.  This is due to the process of learning about the unknown 
unknowns as well as the known unknowns.  Some applications have achieved a high degree of 
automation quickly.  These tend to have a high degree of rote functions.  Some have to wait for 
technology to catch up to be practical.  Others have clear limits in terms of % automation, at least 
with foreseeable technology. 
 

% AUTOMATION

TIME (YEARS)

APPLICATION 1

APPLICATION 2

APPLICATION 3

PAST FUTURE

?

COMPLEXMODELS 3/24/03

 
 
Figure 1-3.  Level of automation achieved (past) and predicted (future) for various applications. 

 
 
 In order to make these decisions, one must clearly define the problem.  This sounds 
obvious, but when it comes to automation of systems heretofore dependent upon human 
judgment, it is imperative to carefully define the problem, since human intelligence may not be 
around to take care of the mistakes that may take years to uncover. 
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Defining The Prediction Problem 
 

 Figure 1-4 provides an overview of an actual system and a corresponding model to be 
used for prediction.  When building models to predict the future, it is most important to clearly 
perceive the differences between the inherent properties of real world systems, their related 
observation data, and the models which people use to describe them.  As is often the case, such 
an obvious conclusion tends to be ignored.  We will emphasize these differences throughout this 
presentation, and also the corresponding differences between prediction and estimation.  As 
normally taught in statistics courses, estimation assumes that the real world system can be 
described as a population.  This is certainly true if our concern is characterizing all that is known 
about a system to date.  However, as soon as we look toward the future, we cannot use 
"standard" estimation theory unless the system is stationary by "standard" definitions, as we shall 
show in Chapter 6. 
 

ACTUAL
SYSTEM

OBSERVED
RESPONSE
DATA

OBSERVABLE
INFLUENCE

DATA
MODEL

OF
SYSTEM

PREDICTION OF
OBSERVABLE
RESPONSE DATA

PREDICT/FIGURE1 - AS OF 5/5/00  
 

Figure 1-4.  General form of a prediction model. 
 
 
 When trying to build models of real world systems to predict their future responses, we 
must use any causal properties (properties that relate cause and effect) that we can derive from 
knowledge of the system.  In doing so, we are seeking delays between external causal factors that 
we can observe, and their effect on system response.  This approach is not to be confused with 
that of finding statistical correlation between some observable time-series and the system 
response.  Correlation does not imply causality.  Furthermore, if we restrict our correlation tests 
to linear relations, we will likely not be able to uncover the correlations between causal factors 
and the response of a nonlinear system. 
 
 When pursuing the search for models that properly relate cause and effect, one must also 
be aware of the errors in perception that typically occur.  These are categorized in Figure 1-5.  At 
first, the possibilities for error may look exaggerated.  They are not.  It is up to the modeler to 
make as much use of observations as possible, while minimizing the likelihood of perception 
errors.  This is a real challenge. 
 
 From the above observations, it should be clear that building models of real world 
systems is a very difficult endeavor.  As the systems we try to model become more complex, and 
particularly if they are nonlinear, the challenge is great.  Models of business and economic 
markets are difficult to build and validate.  The intent of this work is to lay the foundation upon 
which to build a knowledge base for successful modeling of these types of systems. 
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 To provide the foundation for building models to predict the future, a set of definitions is 
proposed that leads to a general formulation of the prediction problem for a broad class of 
applications.  These definitions are based on a measure of prediction accuracy, defined in 
Chapters 2 and 3, which is independent of methods used to produce predictions.  Real-time 
prediction error (that encountered as live data becomes available) is contrasted to the estimation 
error encountered during model identification (parameter estimation using historic data).  It is 
clear that typical measures for estimation error do not apply directly for prediction error.  This 
will be seen in Chapter 8 when we compare the conditional probabilities before and after the 
observed response data becomes available.  Validating statements about prediction accuracy 
represents a more difficult problem, requiring careful attention to "hiding" data from the 
modeler, a concept which is clearly at odds with the idea of characterizing a population.  This 
topic is very briefly addressed in Chapter 4. 
 
 In Chapters 5 through 7, definitions are examined for distinguishing between stationarity 
of deterministic and statistical functions, consistent with those used in physics and engineering.  
The definitions provided here are also consistent with those accepted in the forecasting literature, 
but they have been devised to extend their usefulness in defining the prediction problem. 
 
 Statistical approaches to prediction, as described by Box and Jenkins, [4], Harrison and 
Stevens, [16], and others, depend upon stationarity of the data to be predicted.  Relaxed forms of 
stationarity are also admissible such as with approaches using time-varying coefficients, see for 
example Mehra, [21], and Rosenkranz, [26].  But these "quasi" stationary forms are shown to 
also depend on stationarity assumptions.  Definitions are provided for classifying these 
approaches in Chapter 6.  Underlying methods are described in Chapters 7 and 8 for constructing 
models to predict responses whose history data is nonstationary, apparently random, and need 
not be characterized statistically, i.e., the distribution functions are considered unknown but 
bounded, as in Fisher, [11], and Schweppe [27].  Chapter 9 provides a theoretical definition of 
the prediction problem, and the requirement for ensuring that the data used to measure prediction 
error is properly used. 
 
 Chapter 10 provides some practical suggestions for building prediction models that take 
maximum advantage of the available information. including that based upon human judgment.  
Commonly used models are discussed and compared relative to their usefulness and 
shortcomings.  Also covered are the use of optimization and estimation techniques to determine 
model parameters that maximize prediction accuracy. 
 
 Examples are used throughout to demonstrate how knowledge of the structure and 
dynamics of a particular system can be used to build models which introduce additional 
information above and beyond that available from the observation data.  This additional 
information can serve to further condition probability statements, and increase the accuracy of 
predictions.  In fact, it is this additional information, that is not available in the normal 
"observation data," which allows us to more accurately predict the future responses of a 
nonstationary system. 
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Stochastic Nature Of The Problem 
 
 There are various levels of planning and prediction in a large complex control system.  
For example, one may have to determine the “best” approach to moving vehicles or supplies 
from one location to another.  This can be treated as a classic transportation problem.  Given the 
knowledge of available transportation facilities, air, sea, and ground routes, and the myriad of 
other factors affecting the time and energy required to complete the move, one can apply 
standard techniques, e.g., Linear Programming (LP), to come up with the best solution.  But is 
best good enough?  If the potential outcomes can cause mid-air collisions or power grid failures, 
then one may be dealing with six-sigma (or greater) probabilities. 
 
 
Dealing With Variations 
 

 An LP approach may be excellent for coming up with answers to a problem as posed.  
However, by itself, it may not deal with the stochastic nature of such a problem.  In dynamic 
systems, every attribute may be subject to variations.  In the transportation problem, these 
variations can be due to traffic, weather, breakdowns, etc.  These variations can be taken into 
account in various ways.  For example, traffic may be predictable based upon day-of-week and 
time-of-day.  Even so, traffic can get tied up due to special events.  The time to get from point A 
to point B can be adjusted by a traffic variable.  The traffic variable can be a function of the 
calendar and clock.  Actual traffic can also vary around a mean value due to effects that appear 
random, and are therefore unpredictable.  All such variations must be accounted for when 
determining whether the solution meets the time constraints. 
 

 To generalize the approach to characterizing traffic, each route may have variations in 
time that can be broken into two categories, those that are predictable based upon observable 
attributes, and those that appear to be random.  If we can develop relationships between the 
predictable variations and the observable attributes, they can be applied to adjust the mean value.  
This serves as additional information to reduce the prediction error. 
 

 There are approaches for characterizing the effects due to the random variations.  The 
approach used most often is Monte Carlo Analysis.  In this case, distributions are postulated for 
all of the random variations.  Then a simulation is run with random samples drawn from these 
distributions each time an event occurs requiring a value for the variation.  Depending on the 
scenario, one runs enough simulations to characterize the distributions of the resulting measures 
of performance.  For example, total time to move the trucks from A to B may involve many 
traversals of many routes.  When these individual traversals are simulated, they are subject to the 
variations determined by the random samples.  If a new random number seed is used for each 
simulation, different results will occur for the total time measure. 
 

 After enough simulations are run, a histogram can be used to characterize the distribution 
of total time.  Consider Figure 1-6 as the resulting distribution representing the time to move 
trucks from A to B.  If the simulations took into account all of the variations present in the real 
environment, then one can derive a probability statement about the range of time.  For example, 
if Tmax is 20 hours, and the area under distribution D1 up to Tmax is 95% of the total, one can 
state that trucks can be moved from A to B in 20 hours with a 95% probability. 
 



 

Prediction Systems, Inc.      PREDICTION THEORY               Page  11  

 
P (T  V)

T - time to move trucks

DISTRIBUTIONS  02/07/06

Tmax

D1

 
 

Figure  1-6.  Example of a measure of performance characterized by a distribution. 
 
 
 The probability statement comes directly from a mathematical calculation based upon the 
distribution.  If the distribution represents the real world perfectly, then the probability statement 
is correct.  One must ask how accurately the distribution represents the real world.  This is 
answered by providing a confidence level in the distribution relative to the calculations being 
used.  This is also described in [11].  In addition, there is a more direct way to get to a solution 
without using Monte Carlo.  This is described below in Accounting For Constraints. 
 
 
Dealing With Large Decision Trees In Time 
 
 Complex planning and control systems require a large number of decisions to be made 
over time.  In many cases, many decisions must be made to start or continue an operation before 
any results can be seen.  Decisions may involve selection of an approach from many choices.  
One decision may lead to another next decision level where more selections must be made.  Just 
considering the sequence of decisions coming from each level in a control hierarchy, one could 
envision a very complex picture of this process. 
 
 As observations come in, decision makers, with the help of their staffs, must assess 
changes in a situation, and make corresponding changes in plans and follow on decisions.  At 
each step along the way, at different levels in the decision hierarchy, the characterization of 
effects achieved can be represented by a distribution as in Figure 1-7. 
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 Although Figure 1-7 looks like a normal distribution, the large number of variations that 
one may be faced with may not be characterized.  To use a Monte Carlo approach, or the worst 
case design approach defined below, the distributions can be unknown but bounded.  If the Tmax 
boundary in Figure 1-6 is known, i.e., we know where the 95% point lies, that’s all we need to 
know.  We need not know the shape of the distribution.  But in many cases we don’t even know 
Tmax and must provide an estimate. 
 

P (Z  V)

Zn

D1

d1

Performance Measure

DISTRIBUTIONS  6/29/02

Zl Zu

 
 
 

Figure 1-7.  Desired effects characterized by a distribution. 
 
 
 Considering all of the possible variables and characterizations, one may feel 
overwhelmed by what would appear to be unpredictable chaos.  But operations do unfold 
according to rules.  The rules may be changing, but some level of rules and coordination is 
required to achieve a desired level of effectiveness. 
 
 
Accounting For Constraints 
 
 The need for rules and coordination in operations imposes constraints on behavior.  This 
need increases with the tempo of operations.  In addition, real world systems are nonlinear, 
imposing additional boundaries of constraint.  Behaviors never get to infinity.  Something breaks 
down first.  In addition, there are different levels of constraint violation and corresponding 
actions that must be taken, and these can be bounded in terms of their outcomes in time.  
Figure 1-8 illustrates a (rose colored) envelope generated by six sigma points of successive 
distributions in time. 
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Performance Bracket
T1 DISTRIBUTIONS   02/08/06

T2

T5

T4

T3

P (Z  V)

TIME

Prediction Accuracy as a Function of Time

 
 

 
Figure  1-8.  Prediction of effects characterized by a distribution envelope. 

 
 
 Analyzing the potential trajectory that events may follow as they unfold in time, and the 
way they may contribute to variations in potential outcomes, provides an improved 
understanding of how one may want to proceed to reduce the risk of a failure or catastrophe.  
Operators can lay down operational constraints, e.g., this action must not take more than some 
specified amount of time; or, this flight must land before that flight can take off.  All of these 
constraints serve to bound the problem. 
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2. MEASURING PREDICTION ERROR 
 
 
 When building models to predict the future responses of a system, a number of questions 
arise that can lead to confusion when comparing the accuracy of one prediction to another.  The 
following discussion is an attempt to surface and resolve these questions in a manner consistent 
with standard statistical practices.  In this discussion, we will use tc to denote the current time. 
 
 Probably the most important distinction between the problem of prediction (determining 
the system response at t > tc) versus the problems of filtering (determining the system response 
at t = tc) and smoothing (determining the system response at t < tc) is the means for measuring 
"optimality" with respect to the data, and a corresponding error criterion.  Referring to 
Figure 1-4, the only "true" test of a prediction model is to drive it with observable influence 
factor data currently available (at t ≤ tc), make a prediction, and then compare the predicted and 
observed outcomes in "real time" as they occur.  This must be performed in such a way that 
future outcomes cannot be used to influence the error.  If a model is influenced by the modeler 
after having seen the "future" data, any measures of prediction error are subject to 
"contamination," i.e., the measure of error may not fairly represent the ability of the model to 
predict the real future. 
 
 Note that this approach is quite different from that of many forecasting techniques that 
use influence factor data predicted by another source to forecast what will happen in the future.  
Using this approach, models are built which simulate what will occur given the factors predicted 
by others.  We will refer to this technique as simulation, since the model simulates what would 
happen if the predicted data accurately represented future outcomes.  However, the accuracy of 
this approach clearly depends on the predicted data as well as the simulation model which uses 
it.  The error measurement used to characterize the accuracy of such a simulation model is 
usually performed using the real values of the predicted variables based on actual past history.  
These models can be very "accurate" if the predicted factor data is accurate.  However, if the 
predicted factor data upon which the model depends is very inaccurate, so is the resulting 
prediction. 
 
 For convenience, we define prediction error as the error encountered when making 
predictions in "real time," or the equivalent thereof, without interaction by the modeler to 
readjust prior predictions.  In other words, prediction error, as defined here, can only be 
measured using data for t > tc which was not available to the modeler.  If any link exists which 
allows information to be derived by the modeler from the future data set (t > tc) upon which error 
is to be measured, then prediction error cannot be fairly measured.  Modeling error, on the other 
hand, is the error measured when using history data (t ≤ tc) to estimate model parameters during 
the model identification process.  This definition of prediction error does not impair the use of 
adaptive models, since they only use currently available data to predict future responses. 
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  It is worthwhile to remark that, once a modeler has seen "future" test data, it is difficult to 
determine that he will not in some way use this information during a model identification process 
that precedes the measure of prediction accuracy on the same "future" data set.  From practical 
experience, there can exist a significant difference between modeling error encountered when 
"fitting" the history, and prediction error.  It is not uncommon for prediction error to be twice as 
big.  This is the case when using the simulation technique described above.  The simulation 
modeler can say his model is very accurate, and that it was the data that came from the prediction 
source which caused the error.  However, the management who made decisions based on this 
model knows only that the forecasted result was anything but accurate. 
 
 As we can see from this example, the definitions used to characterize prediction accuracy 
are critical to our understanding of the causes of error in our models.  It must be emphasized that 
the particular measures of error used for estimation (model identification) and prediction may be 
identical.  It's the difference in the data sets that cause the difference in the errors.  The data set 
used for prediction cannot contain information beyond the current time (i.e., t > tc), else we are 
performing simulation.  However, when performing model identification, we will certainly be 
predicting values for which we already have answers, else we cannot measure the model error. 
 
 It is clear that typical measures of estimation error do not encounter the constraints 
imposed upon the measure of prediction error.  To eliminate confusion, a distinction will be 
made throughout this book between estimation and prediction.  This distinction will be based 
upon the conditional probabilities used for estimation and prediction.  In the case of estimation, 
the probability of the value estimated is conditioned upon all available data, i.e., the population 
concept is valid.  No concern exists about the separation of "future" data upon which the 
accuracy of the estimator is to be tested.  In the case of prediction, the probability of the value to 
be predicted can only be conditioned upon data up to the current time.  "Future" data, to be used 
for measuring prediction error, must not enter into the conditioning of the probability.  These 
probability statements are addressed in the next chapter. 
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3. CHARACTERIZING PREDICTION ACCURACY 
 
 
 In addition to the above problem of measuring prediction error, characterizing prediction 
accuracy for the purpose of comparing two models presents a further complication.  This results 
from the need to introduce probability statements about the accuracy of prediction.  To illustrate 
this problem, we offer the following example.  If we were buying predictions from two 
commercial services, and each makes "point" predictions (i.e., they provide us with a single 
number), we have no way to tell who is going to be best without keeping our own measurements 
over time.  For example, if one service predicts the future response will be 14, and the other 
predicts it will be 18, there is no way to compare the accuracy of their predictions before the 
response actually occurs, since no measure is provided with the prediction. 
 
 
Specification of a Prediction Envelope 
 
 The solution to this basic problem is best addressed by a more detailed example.  Assume 
we want to compare two prediction services, A and B, who provide weekly predictions of money 
supply (M1).  Each service provides predictions over a 12 week future horizon using an 80% 
probability prediction envelope.  An example of such an envelope is shown in Figure 3-1.  It is 
composed of a sequence of intervals for each of the prediction horizons τp = 1, 2, ..., 12.  Each 
service claims that "80% of the time," future values of M1 will fall within their envelope. 
 
 Service A points out that B is not meeting its probability criteria since over the last 6 
months (26 time steps), the actual values of M1 have fallen outside of its τp = 12 prediction 
interval (farthest out horizon) 6 times.  Refer to Figure 3-2.  Therefore, it should have been called 
a 77% envelope (at best) since actuals were outside slightly more than 23% of the time. 
 
 B counters by saying that 26 weeks is an insufficient time period to characterize the 
probability.  B then points to its ten year track record which shows that actuals have been inside 
the 12 step prediction interval better than 80% of the time.  In fact, at τp = 12, they have been 
in 81.5% of the time. 
 
 A states that B is riding on its old laurels.  That, in fact, it had a great model 5 years ago 
but, over the past few years, its accuracy has degraded.  B immediately recognizes that the 
marketplace is most concerned about the current history.  Everyone knows that the basic 
structure of markets can change, so it decides to research the problem.  The first decision to be 
made is what "looking back" horizon into the past, τb, to use to characterize its probability 
statement.  Obviously, the shorter the horizon, the more appealing to the marketplace.  After 
much thought, B concludes that it must consider horizons on a quarterly basis, and that a single 
quarter might be watched, but that two quarters (26 weeks) is probably the shortest realistic time 
period from a "statistical" standpoint. 
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 To characterize the statistics for the above problem, the following definitions are offered. 
 

τp - is the number of future time steps from the current time step to the future time 
horizon for the which system response is being predicted. 

 
τb - is the number of past time steps from, and including, the current time step to the 

looking back horizon, used to define the probability statements. 
 
 n  - is the number of mutually exclusive "τb" sample sets (ensembles) of history data 

available for testing the probability statement. 
 
In other words if N is the total number of sample points (weeks) of history data, then 
 
   

b

N
n = τ  

 
 As B modified its model to ensure the truth of its 80% probability statement, it 
determined that there were certain sample sets of τb weeks for which it was very difficult to 
support the 80% level.  Upon checking A's predictions, it was determined that they too were "out 
of bounds" during these periods.  In fact, A was now outside the envelopes more than 20% of the 
time.  And, this probability increased as τb became smaller. 
 
 
Measuring Confidence in the Prediction Envelope 
 
 From the above sample problems we derive the following conclusions.  When making 
statements about the probability that future outcomes will lie within a given envelope, we must 
pick a specific looking back horizon, τb, to test the probability statement.  Next, we must 
consider all possible sample sets from the history data which contain τb contiguous samples.  
(There will be N - τb + 1.)  We can then plot the distribution of the number of times the actual 
values fell inside the envelope for a given horizon.  See Figure 3-3. 
 
 Assuming this distribution is representative of the future, we can compute the probability 
that the actuals will fall inside the envelope at least 80% of the time.  This provides a confidence 
statement about the 80% probability envelope.  For example, we might conclude from 
Figure 3-3. that 

P{X ≥ 80%}  =  0.95. 
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Figure 3-3. Statistical distribution of the number of times 
   the predictions fall inside the envelope. 
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Figure 3-4. Distribution when the looking back horizon, τb, equals one. 
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 We note that as  τb → N,  σ →0,  and μ represents the probability statement that would 
be perfectly correct for the entire history.  Conversely, as τb →1,  σ expands so that the 
distribution has finite probabilities at 0 and 100%, and zero probability everywhere else, refer to 
Figure 3-4.  Ideally, for a  τb of reasonable size, we would like to see the standard deviation as 
small as possible.  A small standard deviation would indicate that the probability statement 
varied little from time period to time period.  However, to achieve this may require a large value 
for τb, which the market for predictions may question. 
 
 Our goal is to develop measures of accuracy that also serve to measure consistency of the 
model for small looking back horizons over long periods of history.  This can be accomplished 
using confidence intervals about the prediction envelope boundaries for a given τb.  In general, 
for any given τb, we can determine the confidence level (e.g., 95%) for which we will be inside 
the (80%) envelope.  Assuming that the distribution in Figure 3-3 were normal, then maximum 
consistency can be achieved by minimizing the variance, or the mean absolute deviation, given a 
desired looking back horizon, τb, and probability prediction envelope, e.g., 80% . 
 
 
A Measure Of Prediction Quality 
 
 Using the above definitions, we can now pose a measure of quality of prediction that 
accounts for the actual width of the envelope for a given probability (e.g., 80%).  The following 
measure is offered for a particular forward prediction horizon, τp, and looking back horizon, τb. 
 
    

  
p b

C*P
Q( , ) = 

1 + W
τ τ  

 
where:     - Q is the measure of prediction quality, 
 
    - P is the probability that future values will fall within the envelope at a 
   given τp (80% in the above examples), 
 
    - C is the confidence in the value of the probability statement for a 
   given τb (95% in the above examples), 
 
    - W is the mean normalized width of the envelope, relative to the actual value, 

at τp. 
 
 Using this measure, quality improves (degrades) with increasing (decreasing) probability 
of being inside the envelope, and with increasing (decreasing) confidence in the probability.  It 
also improves (degrades) as the width of the envelope grows smaller (larger).  As the statement 
of probability of being inside the envelope approaches unity (100%) and the confidence in the 
statement approaches unity (100%), and the width of the envelope approaches zero, quality 
approaches unity, and predictions approach certainty. 
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4. OPTIMIZING AND VALIDATING MODELS OF SYSTEMS 
        TO PREDICT THEIR FUTURE RESPONSES 
 
 
 If prediction accuracy cannot be measured using data available to the modeler, then how 
can the modeler optimize his model to maximize prediction accuracy?  This question involves 
the relationship between optimization and validation of models to predict the future.  To answer 
this question, we must understand that the modeler's mathematical measure may be the same for 
both optimization and validation.  However, the data set available to him during model 
identification only allows him to minimize model error.  In other words, having identified his 
model by minimizing the difference between model prediction and known "future" data (an error 
measure), he has conditioned his probability statement on that known data.  He must use a new 
unseen data set for measurement of prediction error. 
 
 The model identification process can be achieved using a deterministic approach, a 
statistical approach, or a combination of both.  The next sections describe these approaches, and 
their fundamental differences.  In practice, a combination of the two will likely be best.  
However, the order in which these are approached is important, as should be apparent from the 
following sections.  In general, one should build a model structure from deterministic knowledge 
of the mechanics of the system.  After this knowledge is exhausted, one usually resorts to a 
statistical approach to optimize internal model parameters (coefficients) which cannot be 
obtained deterministically.  Given that the modeler has knowledge of the workings of the system, 
and the skill to build the model structure, scarcity of data for model validation remains a great 
cause for concern. 
 
 The following sections provide concepts for building and validating models to minimize 
prediction error. 
 
 
Statistical Models for Prediction 
 
 We will start with the statistical approach to building models to predict the future.  This 
will serve to emphasize the importance of taking the deterministic approach as far as possible 
before resorting to the statistical approach.  We assume that a model structure has been 
developed using the deterministic approach which effectively takes the form of mathematical 
functions or rules that relate the observable influence factors to the future response of the system.  
Using the history data of both the influence factors and the response, one can try to find values of 
prescribed model coefficients, that have been left as unknown parameters, to minimize the 
difference between model predictions and observed responses.  Typical performance measures 
for modeling error are the mean absolute deviation and mean square deviation.  These same 
measures can be used for validating the model to determine its prediction error.  However, as 
stated above, a new unseen data set must be used to perform the prediction error tests.  Thus, the 
model cannot be optimized while measuring prediction error. 
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 It is therefore necessary that the modeler establish correlation between modeling error 
and prediction error.  Otherwise, he has no measure for deciding on ways to improve his model, 
and could not expect improvements in prediction accuracy on other than a "random" basis.  This 
correlation can only be ascertained by successive experiments in real time, or with sufficient 
history which has been "hidden" from the modeler.  The problem is further complicated because 
the correlation measure must depend, in general, upon model parameters being optimized and, by 
definition, correlation must be done after the optimization has been completed.  Once prediction 
accuracy is measured over a given data set, that data set cannot be used again to measure 
prediction accuracy by the same modeler.  Only the correlation can be used. 
 
 From the above facts, one sees the difficulty with the statistical method, i.e., data for 
validation purposes can be consumed quickly.  This makes the deterministic approach a critical 
part of the model building process.  One must try to take the deterministic approach as far as 
possible without optimization, leaving the statistical approach till last, as more of a validation 
effort than an optimization effort. 
 
 
Deterministic Models for Prediction 
 
 The deterministic approach consists of formulating models from knowledge of how the 
system operates internally.  The modeler tries to determine the rules that take in the influence 
factors and cause the future responses.  Determining these rules - the internal operation of the 
system - is the key step to incorporating maximum information in a prediction model.  This 
implies conditioning the probability statement on more information. 
 
 If a modeler can create a model of how a system translates the observable influence 
factors into future responses without looking at any history data, then the history data is available 
for validation of the model.  If, on the other hand, one takes all of the data and performs 
statistical fits, that data is no longer useful for validation purposes. 
 
 Loss of data is not the most important reason for using the deterministic approach first.  
Representing the underlying cause and effect relationships internal to the system is most 
important.  As will be seen in the following chapters, the system itself must have certain 
properties that make it predictable.  These properties depend on delays and time constants that 
are inherent in the system, being the causal properties that relate the observable influence factors 
to future responses.  Unless the modeler can represent these properties, accurate prediction of 
nonstationary system responses cannot be accomplished in a reliable manner. 
 
 This approach is not to be confused with that of finding statistical correlation between 
some observable time-series and the system response.  Correlation does not imply causality.  
Furthermore,  if we restrict our correlation tests to linear relations, we will likely not uncover the 
correlations between causal factors and the response of a nonlinear system.  The problem of 
finding nonlinear transformations does not lend itself to a naive or "black box" approach as can 
be used with linear systems.  The modeler must resort to an understanding of the mechanics of 
how the system operates. 
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General Approach to Building and Validating Prediction Models 
 
 The following steps provide a summary of the proposed approach to building and 
validating models to predict the future responses of nonstationary systems.  
 
 

1. Build a deterministic model that characterizes the inherent cause and effect 
properties of the system, i.e., a structural model that characterizes those properties 
that translate observable influence factors into predictable system responses. 

 
2. Using history data and optimization techniques, find values for any remaining 

unknown parameters that minimize measures of model error. 
 
3. Using new "hidden" data, validate the model, measuring prediction error. 
 
4. As more data and cause and effect knowledge become available, repeat the 

process. 
 
5. As the process is repeated, try to obtain correlation between changes in model 

error and prediction error. 
 
6. This correlation can be used to guide additional steps toward improving 

prediction accuracy.  Obviously, if reductions in model error do not correspond to 
reductions in prediction error, much data can be wasted in this process. 

 
 
 The most difficult step in the above process is building the deterministic model.  
Representing the structural properties of a system which afford accurate prediction of future 
responses is the key.  These structural properties may take the form of rules or algebra.  The 
algebra may typically take the form of dynamic difference or differential equations.  In fact, the 
state space framework used in physics and engineering is well suited to characterizing models of 
this type using an algebraic approach.  The next few chapters are aimed at providing the 
background for attacking this problem in an organized way, starting with a description of the 
state space framework. 
 
 In recent years, discrete event simulation has opened the door to a discrete systems 
theory.  An extended version of this approach allows one to write rules that govern judgments 
and decision processes in an English-like language, with algebraic expressions mixed in.  This 
new paradigm for modeling complex systems has been used extensively and successfully by PSI 
to predict results of communication systems testing.  It has been demonstrated that the extremely 
complex models needed to obtain acceptable prediction accuracies could be built much more 
easily using this new approach.  In fact models that were heretofore intractable were easily 
developed and tested.  Although the treatment in this book follows a traditional mathematical 
approach, the theory derived applies directly to the discrete event paradigm. 
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5.   A GENERALIZED MODELING FRAMEWORK 
 
 
The State Space Framework 
 

 A State Space framework, commonly used in engineering and physics, [1], [10], [14], 
[19], [27], [31], is most convenient for defining the prediction problem, as well as the framework 
upon which to build the structural models themselves.  We start with the basic definitions.  The 
state of a system is defined as a set of values that, along with the input driving forces to the 
system, are sufficient to describe the behavior of the system, reference Figure 5-1.  This 
framework has been shown to encompass the most general modeling problem, see for example 
Gelb, [14], or Schweppe, [27]. 
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Figure 5-1.  The State Space model. 
 
 
 Once a collection of attributes representing the state of a system has been selected, the 
modeler can describe the system in terms of its causes and effects.  To do this, the modeler must 
describe conceptually the relationships which he perceives to exist in the system.  They must 
then be incorporated into the framework of a state space model.  These relationships, which must 
be described by the modeler, typically represent significant additional information about the 
structure of a system which can lead to a corresponding improvement in model accuracy.  The 
convenience of using the state space framework comes about by a separation of observation from 
the conceptual dynamics of a system.  It is this separation of concept from observation which 
affords the modeler a powerful tool for mathematically formulating his conceptual knowledge 
about the structure of a system. 
 

 Additional accuracy can be obtained by modeling the effects of driving forces which are 
assumed to be observable, causal, and to "lead" the response.  This is the normal use of the 
concept of driving forces, otherwise no additional information could be obtained from them for 
improving prediction accuracy.  In particular, we are concerned with the description of 
nonhomogeneous models which relate system responses to nonstationary driving forces which 
need not be characterized statistically.  We must understand that these relations can be highly 
nonlinear, and difficult to model.  However, incorporation of these effects can also lead to 
significant improvements in model accuracy. 
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 These two aspects of a model,  
 

• expression of the structural properties of a system 
 

• modeling the effects of nonhomogeneous driving forces 
 

represent additional information which is generally not contained in the response data, 
particularly when the system is either nonlinear or nonstationary. 
 

 We wish also to allow for development of complex models without arbitrary confinement 
due to rules of parsimony advocated by a number of authors, e.g., Tukey, [29].  When using 
methods where the structure of a system is ignored, and a naive approach is pursued for model 
identification, then unknown coefficients are used merely to fit the response data.  In this case, 
the modeler may be concerned about parsimony.  This is because additional coefficients add no 
additional information to condition the probability statement so as to be more accurate.  
However, if a model is enhanced by the benefit of additional knowledge of the structure of the 
system, then these model additions will serve to condition the probability statement so as to be 
more accurate (by definition) and the constraints of parsimony do not apply. 
 

 A user of predictions will judge one model to be superior to another if it provides him 
with consistently more accurate predictions of the future.  On this basis, there are many examples 
in engineering (e.g., modeling of integrated circuit chips) where models have been carefully 
constructed based on knowledge of a physical structure.  The complexity of these models would 
appear to violate rules of parsimony as advocated by many statistical forecasters.  Nevertheless, 
these models have provided excellent consistency with test results, long after model 
development. 
 
 
A Generalized State Space Framework 
 

 In order to deal with more complex models, particularly those involving human decision 
processes, one must move towards a more generalized framework.  To do this, we will use 
Generalized State Space where the state vector is not limited to numeric values.  This provides 
for states that take on words as well as numeric values, e.g., GREEN, YELLOW, RED, etc.  In 
addition, the transformations need not be limited to mathematical operators, but can contain 
conditional statements, e.g., IF ... THEN ... ELSE ... , as well as statements that move and change 
data words.  Although described originally by Cave in the earliest versions (1982-1983) of the 
VisiSoft Users Manual, [15], a similar but more restricted concept has subsequently been 
described by others, see [24] and [25]. 
 

 The Generalized State Space framework allows the modeler to more accurately represent 
a physical system, particularly one that is nonlinear and contains human or computer decision 
algorithms.  This framework eliminates cumbersome abstractions that make it difficult for 
subject area experts to relate to the models.  It provides for more direct validation of a model.  
Examples of this approach are provided in Simulation of Complex Systems, [10], along with 
comparisons to standard mathematical approaches.  We will stay with a mathematical framework 
in this book to expose the theory.  However, there is a one-to-one correspondence between the 
mathematical principles described here and those of the generalized framework. 
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General Model Formulation 
 
 A general model formulation of a system would include several properties denoted by 
 

X(T)   =   

1
2
X (T)
X (T)
  .
  .
  .
Xn(T)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where X(T) is a vector valued function of time in some n-dimensional space.  Some of these 
properties may be observable, but none need be.  The important criteria is to select a set of 
properties which simplifies the modeler's conceptual view of the "mechanics" of the system, e.g., 
how a market physically operates or moves from observed time point to observed time point.  In 
many cases, these conceptual properties cannot be measured, at least for economic reasons.  For 
example, we can envision a market as being composed of a mass of people who enter the 
"market place" upon making a decision to buy or sell.  Upon striking a deal which satisfies their 
desire to buy or sell, they leave the market place.  We can write the "equations of motion" which 
describe their rate of entry, their number at any time, and rate of departure based on external 
influences.  Whether we can observe these properties directly is unimportant, as long as we can 
relate them to things we can observe, such as high price, low price, and volume of trading for the 
time period of interest.  The objective is to predict X(T+1), the state of the system at the next 
time step. 
 
 To this end, a dynamic model of the form 
 
(5-1)   X(T+1)  =  F[X(T+1), X(T), U(T), T] 
 
is proposed.  Thus, the next state of the system can depend upon itself X(T+1) (i.e., it is 
nonlinear), the current state X(T), the stimulus or driving force U(T), and upon time, T, directly.  
In particular, the driving force vector 
 

U(T)   =   

1
2
U (T)
U (T)
  .
  .
  .
Um(T)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
must be directly observable, and must lead and affect the response.  Typically the driving force is 
unpredictable.  Otherwise, it could be incorporated as a response to another driving force with a 
further lead, or as a known function of time. 
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 We will denote the observable system response by the vector 
 

Z(T)  =  

1
2
Z (T)
Z (T)
  .
  .
  .
Zn(T)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
If this observation vector, Z, can be derived from the state vector, X, at any time T via a 
relationship of the form 
 
(5-2)     Z(T)  =  H[X(T), T], 
 
then, given the prediction of X(T+1) from our dynamic model (5-1), we can calculate Z(T+1) 
from (5-2).  In addition to being a general formulation for dynamical systems, experience has 
shown that this separation of observation from concept allows the modeler to more easily 
translate his knowledge of system structure into mathematical form. 
 
 In future sections we will have cause to view equations (5-1) and (5-2) as a single 
transformation, C, denoting the relationship between the driving force vector at time T, and the 
observation vector at time T+1. 
 
(5-3)    Z(T+1)  =  C[X(T), U(T)] 
 
We will refer to C as the system operator, reference Figure 5-1. 
 
 
Nonlinear Considerations 
 
 To clarify the concept of linearity versus nonlinearity in a model, consider the operator 
 
(5-4)   G[X(T+1), X(T), U(T), T]  =  0 
 
We say the model is linear when G above is linear in its first argument, X(T+1).  In such cases, 
X(T+1) is relatively simple to isolate algebraically, leading to 
 
(5-5)   X(T+1)  =  L[X(T), U(T), T] 
 
Any other situation with respect to the first argument of G in (5-4) above is said to be a nonlinear 
model.  Most often, when modeling nonlinear systems, no simple isolation of the X(T+1) term is 
possible. 
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 As an example of a nonlinear relation, consider the scalar state equation 
 

(5-6)   x(T+1)   =   a.x(T)  +  b.u(T) 
 

where b depends on x as shown in Figure 5-2.  This relation is typical of market saturation 
effects.  For example, let u represent advertising budget and x product demand.  For small values 
of x, demand increases linearly with u.  As x increases sufficiently, b decreases, and increased 
advertising will cause smaller increases in demand.  For large x, advertising has little effect.  We 
note that the relationship between b and x is independent of time, a characteristic of nonlinear 
relationships.  We note also that at time T+1,  x(T)  has taken on a known numerical value, 
whereas  b(x(T+1))  and  x(T+1)  must be determined simultaneously.  Methods for finding 
simultaneous solutions to the equations of nonlinear dynamic systems are treated by Gear [13] 
and Nordsieck [22]. 
 

b(x)

x
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Figure 5-2.  Example of a nonlinear relationship. 
 
 
Nonhomogeneous Considerations 
 

 We wish to characterize "forced response" or nonhomogeneous type systems.  We start 
with equation (5-1), and consider the case when the driving forces are zero.  Under this 
condition, we assume the state of the system to be stationary, i.e., in periodic or constant 
equilibrium.† (Markets of interest can be modeled such that price becomes stationary when 
driving forces are removed.)  In the linear case, equation (5-5), we can define the linear operator 
£ such that, when the driving forces are zero, 
 
(5-7)      £[X]  =  X(T+1) - L[X(T)]  =  0. 
 
Equations of this form are termed homogeneous (Tikhonov, [28]). 
 
 When driving force U(T) is introduced, equation (5-7) typically takes the form 
 

 (5-8)      £[X]  =  U. 
 
 
 
 

                                      
† We are describing the system deterministically here, not statistically, reference Tikhonov, [28]. 
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 We note that, once we have defined the equations, the forced response of a stable‡ linear 
system is obtainable by standard techniques, e.g., convolution or Green's function (see, for 
example Friedman, [12]), whereas numerical methods can be used to obtain responses from 
nonlinear systems (as in Gear, [13], or Nordsieck, [22]). 
 

 Where the forced response is itself stationary or periodic, the model can be recast in a 
homogeneous form.  The new model will be seen as having no driving force; i.e., the periodic 
component will appear as an internal part of the system rather than a stimulus.  This principle can 
be extended to the more general case where either the driving force or the forced response is a 
known function of time over the time frame of interest (future included).  Refer to Figure 5-3.  
Using a Fourier series expansion over a bounded time period yields a linear sum of periodic 
functions, which admit to a homogeneous model. 
 

SYSTEM MODEL
C (T)

Z (T)

T

^
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Figure 5-3.  Homogeneous model of the system response. 
 
 
 In general, we are interested in predicting responses to systems which are ultimately 
influenced by driving forces which are not known functions of time, periodic or otherwise.  To 
this end, we define our model to be nonhomogeneous if it fits the form of equation (5-4) above, 
where U(T) is a nonzero observable driving force which may be independent of X, but has a 
causal effect on X.  We note that this definition is independent of the ability to isolate either 
X(T+l) or U in (5-4).  In general, U(T) is unknown until observed, and need not be characterized 
statistically.  
 

 At this point we introduce the concept of a nonhomogeneous system, i.e., one which can 
only be represented accurately by a nonhomogeneous model.  This concept is helpful in 
determining the best form for model equations.  Basically, if a system is driven by external 
forces which appear to be random, and if the system response can be related to these driving 
forces through delays and time constants, then one can predict the response more accurately by 
using a nonhomogeneous model which accounts for these driving forces.  This important concept 
is further described in Chapter 8, STOCHASTIC MODELS under Nonstationary Considerations. 
 
 

                                      
‡ By "stable" we imply that bounded inputs yield bounded outputs, refer to Chapter 6 under The 

Concept of Boundedness. 
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Modeling Inertial Subsystems 
 

 To demonstrate the significance of incorporating "leading factor" driving forces into a 
model, we offer an example which is representative of many actual cases.  Let U(T) be the 
driving force (Figure 5-4a), and let Z(T) be the output response of the system, (Figure 5-4b).  
Both are observable at discrete time points T.  Figure 5-4b represents a typical superposition of 
two exponential response functions as used in engineering.  TD1 and TD2 are delay times 
measured from the input impulse.  TD1 is the time before the first exponential starts to rise 
(positive).  TD2 is the time before the second exponential starts to fall (negative).  TAU1 and 
TAU2 are the rise and fall time constants for these two exponentials.  These same delay times 
and exponentials are applied to all succeeding inputs. 
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Figure 5-4a.  Driving force input. 
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Figure 5-4b.  System response. 
 
 
 The impulse at To causes inertial properties within the system to react over time.  These 
reactions are represented by exponential rise and fall times with time constants TAU1 and 
TAU2.  They are then superimposed using linear superposition.  Without being able to model 
these inertial effects and their sufficiently long time constants, one cannot hope to predict the 
future beyond a single time step. 
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 As the figures indicate, the response is 0 prior to (and at) T0, when an impulse occurs in 
U, and remains zero for three more time steps.  Simply using the observed output of the system 
at T0, T1, T2, and T3 will be of no value in determining the output at T4.  The information, that 
an impulse has occurred, cannot be derived from the response data alone. 
 

 Assuming our model in Figure 5-4 represents the system perfectly, we could predict with 
no error up to four steps into the future.  Furthermore, when the input appears to be purely 
random, so does the response; but this does not preclude us from making perfect predictions of 
the response up to four steps into the future. 
 
 
Modeling Distributed Responses To Events 
 

When modeling populations of elements of nature, one must face the fact that all 
elements or individuals do not produce the same response to an event, and if they do, it is not 
produced at the same time.  Instead, responses are typically characterized by distributions in time 
and state space.  For example, if the electrical power is lost in a given populated area, large 
numbers of people will start trying to communicate with police, neighbors, radio stations, 
relatives, etc.  Their response to this well defined event produces a distribution of follow-on 
events that can be quite varied in their actions as well as the time of occurrance. 
 

 It is this very behavior that produces inherent predictability in a system.  However, we 
must be able to model these types of responses accurately as they directly affect the accurate 
prediction of behavior of such a population.  We can create such models quite easily using 
VisiSoft. 
 

 We will start with an example of distributed responses to a sequence of events to show 
how the resulting cumulative response can be modeled quite acurately.  This is useful in 
predicting responses to events that occurred many timesteps in the past.  To demonstrate this, we 
will build a model of housing unit completions as a function of the event of taking out a building 
permit.  We can make a number of simplifying assumptions to start, and then build a more 
accurate model. 
 
 
Modeling Housing Completions As A Funciton Of Building Permits - An Example 
 

 We would like to predict the number of housing completions in a given geographical area 
months in advance.  These predictions could then be used to predict sales of appliances, phone 
systems, furniture, carpeting, etc., purchased after a house is complete.  Actual completions can 
be measured by certificates of occupancy issued in a given month.  The most significant factor in 
predicting housing completions is building permits.  These are normally taken out many months 
prior to completion.  We start with an analysis of one month's worth of building permits to 
determine the resulting distribution of completions for those permits.  Let's assume that our 
investigation yielded an average distribution that took on a shape as shown in Figure 5.5.  Then 
we could model the resulting distribution as shown where the number of housing units in the 
distribution equaled the building permits taken out (or some percentage if all did not result in 
completions).  Figure 5.6 shows the superposition of housing completions due to building 
permits taken out in months 3 and 10.   
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Figure 5.5.  Housing units completled in months 6 through 15 as a result of building  
                                 permits in month 1. 
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Figure 5.6.  Housing units completed in months 8 through 24 as a result of building 
                                 Permits in taken out in months 2 and 10. 
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 Figure 5.7 shows the predicted housing completions as a function of building permits 
starting in month 1.  Note the time it takes for a build up of the proper memory of housing 
completions due to building permits in the past.  If this were an actual prediction, then the result 
would not be valid until the results of any permits in months prior to month 1 were washed out.  
With the distribution shown, this would take a total of 15 months.  Based on this model, the data 
beyond that point would not be affected by anything before month 1. 
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Figure 5.7.  Housing units completed a result of building permits starting in month 1. 

 
 
 If one were to plot the correlation between housing completions and building permits as a 
function of time for this model, it would peak around 10 months.  This is because the mean of 
the distribution falls at about this point.  Note also that, if the distribution function accurately 
represented the actual housing completions, there would be no error in predictions up to five 
months out because the unknown quantities of building permits taken out after the current time 
would not affect housing completions during this period.  Obviously, there are other factors that 
affect housing completions, and we would look to incorporate those into our model. 
 

 The VisiSoft model described above contains simple submodels that produce the 
prediction of housing unit completions.  This model is based on a single external factor, namely 
building permits, and the distributed response function described above.  It is also based upon 
time correlation factors that are developed in a weighted manner over prior years and applied to 
the current year to improve the prediction accuracy.  Time correlation is described further below. 
 

 We note that this same approach has been used to accurately predict U.S. Money Supply 
over many years, see for example Figure 3-1. 
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Linear Versus Nonlinear Systems 
 

 It is easy to confuse linearity and nonlinearity.  For example, one may look at the 
response of a system with nonhomogeneous inputs (external driving forces) and conclude that 
the time-domain waveform appears “chaotic”.  In some fields, this is translated as the response 
of a nonlinear system.  To impose a more careful consideration, the word chaotic is used to 
describe the apparent behavior of a function of time.  It is not a mathematical term.  Apparent 
chaotic behavior is easily generated by linear systems. 
 

 Consider the linear addition of nonhomogeneous inputs to a system.  As long as we are 
looking at the waveform over finite time periods (difficult to avoid), the inputs may be sine 
waves that are linearly superimposed, where at least one of the sine waves has a period longer 
than that of the observation period.  The result may appear “chaotic” to some observers.  
Examples of this type are common when studying Fourier series or Fourier transforms.  What is 
important is that the inputs are linear stationary functions that may be operated upon using a 
linear transformation as described in the next chapter. 
 
 We also note that it may be difficult to assess nonstationarity.  This is a common cause of 
misunderstanding when building prediction models.  Such misunderstandings are typically 
uncovered only after properly characterizing and validating statements about prediction 
accuracy.  One finds that nonstationarity is often the result of nonlinearity. 
 

 When characterized properly, nonlinear system properties are generally invariant with 
time (in special cases they may also vary with time but these cases do not change our analysis).  
Thus they can be invoked at any time and their properties will hold.  This is further discussed 
below. 
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6. CLASSIFYING SYSTEMS AND THEIR MODELS 
 TO PREDICT THEIR RESPONSE 
 
 
 In the prior section, a general model formulation was provided on a mathematically 
deterministic basis, without concern for additional real world considerations.  In fact, when 
modeling real world systems to predict their future, a number of constraints must be addressed 
which serve to both help and hinder the modeling process.  These constraints are addressed 
below in terms of "boundedness," "randomness," and "stationarity."  The purpose of this section 
is to further understand the inherent properties of systems and the functions used to represent 
their dynamical behavior.  This is particularly important when distinguishing between prediction 
and curve-fitting (the underlying approach in many books on forecasting).  This section is also 
aimed at helping the transition from deterministic models to probabilistic models so that we can 
provide predictions whose probabilities are conditioned on all available information about the 
system. 
 
 Proper characterization of the properties of a system is an essential step in the modeling 
process.  Although it is not necessary that the properties of a model be identical to those of the 
system to obtain good results, it is important that the properties of a model be distinguished from 
those of the actual system to gain a proper perspective.  This may sound obvious, but lack of this 
distinction has been the source for much confusion in building models for prediction.  If certain 
properties of a system must be modeled for valid results, then those properties must be reflected 
in the model. 
 
 In the prior section, we addressed systems with both nonlinear and nonhomogeneous 
properties.  The intent of the examples was to expose both the likelihood of occurrence of these 
properties within systems of interest, as well as the effects they can have on prediction accuracy 
if not modeled properly.  The effects of nonlinearity and nonhomogeneity are more apparent than 
those to be discussed.  This is because they can be described in terms of deterministic models of 
physical systems for which measurement is relatively easy. 
 
 The systems with which we are concerned have additional properties which are much 
more subtle to recognize and model.  In addition, much care must be taken when characterizing 
these properties to ensure that the definitions being used properly apply to the real world system 
being modeled.  This word of caution may also appear obvious, but there are many definitions of 
similar concepts which do not apply when building models for prediction. 
 
 The following discussion highlights properties of systems which can afford insights into 
corresponding properties of their prediction models.  If properly reflected in a model, they can 
significantly enhance prediction accuracy.   
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The Concept of Boundedness 
 
 The systems of concern here are always bounded in time and measures of their state.  
These properties of boundedness are described below. 
 

• Discrete sampled data - Observations are available only at discrete points in time, 
i.e., we are concerned with sampled data systems. For example, markets may be 
monitored on a yearly, monthly, daily, or transaction by transaction basis.  All are 
sampled at discrete points in time. 

 
• Finite time period - The time period of interest is finite.  All market history and 

future horizons of interest are finite. 
 

• Finite number of sample points - The number of observations is finite, i.e., bounded.  
The number of data points may be extremely large, but is not infinite. 

 
• Stable - Bounded inputs yield bounded outputs.  Any influences on the system which 

are bounded can only cause responses which are bounded.  Nonlinear effects, such as 
saturation, prevent market responses from going to infinity. 

 
• Bounded Measures - The system is always bounded.  Any measures or variables 

describing the state of the system or its responses are always bounded.  Real world 
systems are always finite. 

 
 It is important to realize that we have enumerated properties of a system, its observations, 
and our time frame of interest, these being distinct entities.  We note that all of these measures 
are bounded, by definition.  In particular, we are only interested in systems described by a finite 
number of sample points which are bounded.  This implies that the spectral properties of such 
systems, i.e., their properties in the frequency domain, must also be bounded. 
 
 
The Concept of Randomness 
 
 We will limit our discussions of randomness to that of bounded data sets which could 
represent the system response, or external factors that affect the system response.  By "bounded" 
we imply the properties of the previous section, i.e.:  
 

- bounded time frame of interest 
 

- bounded number of discrete sample points 
 

- bounded values of the data 
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 The usual definition of randomness implies no correlation with time, i.e., no 
autocorrelation.  The usual test states that Z(T) is random when the expected value of the inner 
product of the deviates is sufficiently close to zero for all  τ > 0.  We will use the notation: 
 

(6-1)   Ε{Z(T), Z(T+τ)}  <  δ   ≈  0     for all  τ> 0. 
 

where        Ε{Z(T), Z(T+τ)} = 
TT
1

 • •

TT

T 1
[DZ(T) DZ(T+ )]

=
τ∑  , 

 

              DZ(T) = [Z(T) - μ Z], 
 
and μz is the expected value of Z over the period of interest: 
 

   μz = Ε{ Z(T) } = 
TT
1
 •

TT

T 1
Z(T)

=
∑  . 

 

Since we are dealing with bounded data sets, we will interpret randomness as follows.  Z(T) is 
not random if a transformation C can be found such that for some τ > 0, 
 
(6-2)   E {C[Z(T)],  Z(T+τ)}     ≥    ετ 
 
where ετ is a sufficiently large value based on judgement.  When this is true, Z(T) is predictable 
to some extent up to τ steps into the future.  Otherwise, Z(T) is apparently random.  The word 
"apparently" is used to imply that we can never be sure that a data set is random, i.e., how do we 
know that, if a C cannot be found, one does not exist.  This is best explained by way of example.  
Modeler A uses a standard autocorrelation test and comes up with a value εA  which is less 
than ετ.  Modeler B uses a special "window" to search for autocorrelation and obtains εB  > εA , 
but still less than ετ.  Modeler C uses a special function C which allows for variations in the 
"period of periodicity" of the data, and comes up with εC >> ετ.  (As an example of changing 
periodicity, the product of two periodic functions with different periods will appear aperiodic 
over a bounded time frame).  We would expect model C to provide reasonably accurate real time 
predictions relative to models A and B. 
 
 The above examples indicate that what one person perceives to be random in time, 
another may determine as having a high degree of order with time.  In other words, there appears 
to be no single measure of randomness for a bounded data set. 
 
 Probably the best example of this phenomenon is encountered in cryptography.  Here one 
creates ciphers using "pseudo" random codes which, when tested by people from whom 
information is to be hidden, appears to be random.  Those having the "key" to decipher the code 
(i.e., they know the transformation C), can retrieve intelligible data which can contain 
information relating to future values of the data set, including new keys. 
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 We must explore the concept of randomness as it pertains to information about the future.  
In this context, a data set appears random if past values contain no apparent information about 
future values.  If, however, we can find a transformation, C, that clearly improves prediction 
accuracy, then the data is not random.  As in the cryptography example, the amount of 
information in a data set may appear negligible.  It's the ability to find the transformation, C, that 
will determine how accurately the future can be predicted for a given τp. 
 

 We may also want to look at statistical properties of the data set.  For example, consider 
the data set in Figure 6-1a.  It appears that Z(T) is increasing in value with T.  In other words, if 
we look at a sequence of subsets of the data (ensembles), the mean value is increasing as a linear 
function of time.  Knowing this, we could determine C by posing a straight line and picking 
values for slope and cutoff to minimize modeling error.  In this case, C[T] becomes a known 
function of time.  Future values of Z, e.g., Z(T+τ), can be determined "more accurately" if we 
look at values of C[T+τ].  We will still encounter error, but this error is significantly less.  Thus, 
the function is not "purely" random, i.e., it contains elements which are predictable.  In addition, 
the resulting error, e, shown in Figure 6-1b, appears to be bounded when normalized to the value 
of the line. 
 

Z(T)
Z

P (Z)
T

Chapter 6  02/08/06

 
 

Figure 6-1a.  Statistics of a response function. 
 
 
 

P(e)

    Z e  
 
 

Figure 6-1b.  Statistics of the error function. 
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Measures of Prediction Error 
 
 Models of a system can be compared in terms of their accuracy based upon measures of 
error.  This can be accomplished using a measure of the sequence of differences between 
predictions, Z, and observed values of the response, Z.  A convenient measure uses the sequence 
of normalized residuals up to T+ τ, 
 

RN[Z(T+ τ)] = 
)Z(T

)Z(T - )Z(T
τ+

τ+τ+
 , 

 

over the period from the looking back horizon, TB.  This measure is denoted by εz :  
 

  εz = Ε{ }RN[Z(T+ )]τ  = 
BT T - T

1
 •

  

T

T = TB

∑ Z(T ) - Z(T )
Z(T )

+ τ + τ
+ τ  

 

 To compare model accuracies, one can compute the error statistics for the above 
measures using data that has not been used to build the models.  If the data has been used to 
build the models, then one is comparing how well the model fits the history data, not how well it 
predicts the future, see [2]. 
 
 We will now investigate the residual error sequence (residuals) to determine if any 
information can be found which can help to improve prediction accuracy.  We might note that 
this error may appear statistically stationary with mean μe and variance σe

2.  In fact, the error 
might only be characterized as bounded, i.e., we cannot determine a particular probability 
density function to characterize it.  In either case, there may still exist another transformation Ce 
that we can apply to the residuals which "filters" or derives information to help improve our 
model, and thus prediction accuracy. 
 
 Now let's assume that the error sequence itself is purely random, i.e., this sequence of 
error data contains no additional information to improve prediction accuracy.  Can anything else 
be done?  If the system is nonhomogeneous, the answer is yes. 
 
 Consider the model in Figure 5-1.  There may exist observable driving forces: 
 

Ui(T), I = 1, 2, ..., m 
 

that correlate to future values of Z, i.e., Z(T+τ).  Refer to Figure 6-2.  Both the driving forces and 
the response appear to be random.  However, knowing the current value of the driving forces, 
one may be able to predict the response τ steps in the future.  Again, the same problem must be 
solved.  One must find the transformation which extracts the information to improve prediction 
accuracy.  In this case, find U(T) and C, such that 
 
 (6-3)       E [C[U(T), Z(T)],  Z(T+τ)]     ≥    ετ . 
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Figure 6-2.  Predicting a "random process." 
 
 
The Concept of Stationarity 
 

 A property which appears to cause confusion in the field of forecasting is that of 
stationarity.  The concept of stationarity is well established in physics and engineering, see for 
example Tikhonov & Samarski [28], page 105.  Stationarity applies to mathematical functions, 
be they deterministic or statistical.  A functional definition will be used here which is consistent 
with the literature, and which hopefully serves to clarify properties of prediction models which 
are easily misunderstood.  Since we are concerned only with functions Z(T) bounded in time and 
measures of state, we limit the definition accordingly. 
 

A Stationary Function is one which is fixed over a given time period τ, i.e., one can 
always find a τ such that  Z(T + τ)  =  Z(T)  for any T. 

 

 Sine waves are examples of stationary functions that are relatively obvious.  Less obvious 
are functions composed of the product of sine functions e.g., sin(ωt) · sin(3ωt) · sin(6ωt).  In this 
case the period τ is 6 times the basic time period. 
 
 In addition, it will be convenient to use quasi stationary functions.  These are defined as 
follows. 
 

A Quasi Stationary Function is one which can be transformed into a stationary function 
using a homogeneous transformation, i.e., one can find a homogeneous transformation C 
and time period τ such that C[Z(T + τ)]  =  C[Z(T)]  for any T. 

 
 Quasi stationary functions have the property that, although the original functions depend 
explicitly on time, a homogeneous transformation may be found which converts them into a 
stationary function of time.  A simple example is the quasi stationary function Z(T) = T.  The 
homogeneous transformation is simply the multiplier 1/T, or  1/T · Z(T) = 1, which is certainly 
stationary.  As a more pertinent example, periodic functions can be transformed from the time 
domain to the frequency domain using a Fourier series.  In fact, any finite time function can be 
transformed into a stationary function using an orthogonal transformation.  More practically, one 
may represent any finite function to a prescribed measure of accuracy using a sufficient number 
of terms from an infinite series, e.g., sines, cosines, or exponentials.  Since we are concerned 
only with bounded functions, we note that they are all quasi stationary.  Note also that these 
definitions apply to statistical functions (probability densities) as well as deterministic functions. 
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 We note that any bounded function can be approximated to any degree of accuracy 
desired by using an orthogonal transformation.  This is known as "curve fitting."  It is important 
to understand the underlying assumption, i.e., that one can fit a "known function of time" to the 
original data set.  Applying this technique when building a prediction model implies that the 
future values of the data set will be an extrapolation of the known function of time selected.  This 
assumption can only be validated by showing correlation between prediction error and modeling 
error for the function being used.  Stated more simply, one must show that future values of the 
response are expected to take on the same functional form as past values. 
 
 
The Concept of Orthogonality 
 
 At this point we would like to explore the development of and limitations of complex 
models, since the systems we are trying to model are typically quite complex.  Moreover, their 
responses are typically nonstationary, statistically as well as deterministically.  Specifically, we 
want to avoid arbitrary confinement to simplistic models based on rules of parsimony.  This 
consideration often arises when developing statistical models, see for example Tukey, [29].  
Although our principal interest is the development of deterministic models, there is a parallel 
concern which should be exposed.  This concern is based on the concept of linear independence 
or, more strongly, orthogonality. 
 
 If, for example, we are trying to relate the response of a system to three candidate driving 
forces, we must first be sure that the three are linearly independent.  This implies that any one 
cannot be expressed as a linear combination of the other two.  There are simple tests for linear 
independence; see, for example, Friedman, [12].  If the three driving forces are linearly 
independent, they must each contain information which is orthogonal to that in the others.  Next, 
if the response can be shown to depend on each of these orthogonal streams of information, then 
each driving force adds new knowledge to help predict the response, and thus improve accuracy.  
This "orthogonality principle," as it is described by Papoulis, [23], is a cornerstone in the 
foundation of information theory.  Its application to the Kalman filter is described in Chapter 8 
under Closed Loop Considerations.  In that case, one designs the filter to ensure the predicted 
response is orthogonal to the noise. 
 
 With these concepts in mind, let's now consider a modeler who is prone to use a curve-
fitting approach.  Having sufficient data that appears functionally nonstationary, he believes he 
can use a large number of coefficients that are linearly independent to fit it.  The problem arises 
when trying to correlate prediction error to modeling error.  If more coefficients are used to 
reduce modeling error, then the ratio of prediction error to modeling error can get quite large if 
the functional form of the history data does not closely correlate to future values.  The 
underlying difficulty has nothing to do with the number of coefficients used to fit the history 
data.  The root of the problem lies with the assumption that the functional form of the history 
data will continue into the future. 
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 To summarize, we may have an additional driving force that is a candidate input to our 
model to improve prediction accuracy.  To accomplish this, we must: 
 

• Ensure that the candidate driving force has sufficient information content that is 
orthogonal to that in the existing driving forces. 

 

• Find the proper internal model that can "extract" this information from the driving 
force data set.  (This can be a difficult modeling problem.) 

 

 In practice, we must be concerned about error in the data.  This topic is reviewed in 
Chapter 8 under Closed Loop Considerations. 
 
 
Statistical Stationarity 
 
 We will now investigate concepts of stationarity as they apply to statistical distributions 
used to characterize systems, their responses, and their models.  Consider the sequence of T data 
points, where T is a finite number,  
 

1,  2,  4,  8,  16,  32,  ...,  xT 
 

 xT is perfectly predictable just knowing T, i.e., 
 

xT  =  2
(T-1)

 
 
Because it is a known function of time, i.e., the value of xT is known for all time T, statistical 
methods are not needed to fit it.  However, if one uses standard statistical tests for stationarity of 
the data, this process is nonstationary.  Simply stated, the mean and variance vary with T.  We 
also note that the response can be represented with a homogeneous model since it is a known 
function of time. 
 
 We summarize the critical facts.  The system portrayed in the above example operates as 
a known function of time.  Therefore it can be modeled as a homogeneous model, i.e., no 
external driving forces affect the system response.  The system response data sequence is 
statistically nonstationary by standard tests.  The system is perfectly predictable.  Hopefully, 
these statements serve to illustrate the importance of differentiating between the properties of 
systems, their models, and their response data. 
 
 Returning to Figure 6-1, assume that we can look at enough ensembles of Z(T), each 
containing enough sample points, to determine that the "statistics", e.g., the mean and variance, 
are not stationary.  However, we can "fit" a function to the data (in this case a straight line) 
which results in error statistics which are stationary over the history data, i.e., changes in the 
error statistics from ensemble to ensemble are insignificant.  We must now correlate reduction in 
estimation error with reduction in prediction error, i.e., we must show autocorrelation on the 
ensemble by ensemble sequence.  To do this, we must show that 
 

    E[C(Z(T)), Z(T+τ)]   >   ετ, 
 

and therefore is significant. 
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 Using enough coefficients of a higher order function to fit the sample points, we can 
reduce the model error as much as we want.  However, if the system were a linear increasing 
function, and the error represented that due to measurements, we could not reduce prediction 
error below that of a straight line.  As we reduce modeling error, the ratio of prediction error to 
modeling error becomes larger.  All we are doing is fitting the history data more accurately (a 
table of history points would be ideal).  However, we may be increasing prediction error! 
 
 From the above examples, we can draw the following important conclusions: 
 

• Any bounded data set may be "modeled" (fitted) by a known function of time 
using a homogeneous model.  However, the error encountered when fitting a 
known function of time to the system response (history) data may bear no 
correlation to prediction error, independent of the number of coefficients used in 
the fit. 

 

• When using optimization to find the "best" coefficients, convergence to a 
stationary model requires that the error statistics be stationary. 

 

• A system response which appears statistically random and nonstationary may be 
predictable if the system is nonhomogeneous, the driving forces are observable, 
and a corresponding nonhomogeneous model can be constructed. 
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7.     TIME CORRELATION 
 
Calendar Correlation Models 
 

 Three years of M1 data, Jan 1981 - Jan 1984, Not Seasonally Adjusted (NSA), are shown 
in Figure 7-1 where the data is moving up and down much more randomly than that which would 
result from the input driving forces.  Clearly one must look for correlation with other sources.  
Although the data jumps around in what may at first appear to be a random fashion, it quickly 
becomes clear that the up and down movement is correlated with the calendar.  Thus we will 
look for correlation with the calendar.  Figure 7-2 shows the data behind the plot in Figure 7-1. 
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Figure 7-1.  Actual curve appears almost random. 
 
 
 The actual data in Figure 7-2 has all of the “bottom” points highlighted in yellow.  There 
are 12 of these in each year, each occurring at the transition between months.  Four major peaks 
are highlighted in blue.  These peaks occur in the 1st or 2nd week of the beginning of the year.  
Three major “double” peaks are highlighted in red.  These occur the week before and the week 
after April 15th, tax time. 
 

 From the curves, it is clear that a special type of correlation analysis - based upon the 
calendar - is required to determine coefficients that could be used to improve the accuracy of 
predictions so that the width of the 80% envelope is as small as possible. 
 

 Although the data is produced once a week, it is correlated on a monthly and annual as 
well as weekly basis.  Thus, it is necessary to do special correlation analyses.  These can be done 
independently, where the time scale with the most correlation can be used to pull out that 
component and redo the correlation analysis on the residual data using the second component. 
 

 To do calendar correlation, one must be able to perform comparisons for a 5 or 7 day 
week; a 4 or 5 week month; and a 12 month year.  One must also determine how to handle 
transitions when there are holidays, and especially when holidays fall on Friday or Monday, the 
transition at the end of a week, or transitions at the end of a month or year. 
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M1 - NSA M1 - NSA
1 Jan 5 1981 430.1 79 Jul 5 1982 451.6
2 Jan 12 1981 423.6 80 Jul 12 1982 3 4 457.4
3 Jan 19 1981 3 4 419.8 81 Jul 19 1982 450.0
4 Jan 26 1981 404.7 82 Jul 26 1982 441.8
5 Feb 2 1981 403.3 83 Aug 2 1982 445.6
6 Feb 9 1981 408.7 84 Aug 9 1982 4 5 454.0
7 Feb 16 1981 3 4 407.4 85 Aug 16 1982 452.4
8 Feb 23 1981 402.6 86 Aug 23 1982 446.7
9 Mar 2 1981 404.5 87 Aug 30 1982 444.8

10 Mar 9 1981 414.3 88 Sep 6 1982 457.5
11 Mar 16 1981 3 5 414.6 89 Sep 13 1982 3 4 464.6
12 Mar 23 1981 408.3 90 Sep 20 1982 459.0
13 Mar 30 1981 409.8 91 Sep 27 1982 445.9
14 Apr 6 1981 429.4 92 Oct 4 1982 461.5
15 Apr 13 1981 3 4 433.9 93 Oct 11 1982 3 4 469.5
16 Apr 20 1981 439.7 94 Oct 18 1982 468.5
17 Apr 27 1981 425.4 95 Oct 25 1982 459.1
18 May 4 1981 423.5 96 Nov 1 1982 465.3
19 May 11 1981 3 4 422.5 97 Nov 8 1982 4 5 476.1
20 May 18 1981 418.9 98 Nov 15 1982 478.3
21 May 25 1981 411.0 99 Nov 22 1982 470.8
22 Jun 1 1981 417.6 100 Nov 29 1982 471.0
23 Jun 8 1981 4 5 424.4 101 Dec 6 1982 483.9
24 Jun 15 1981 427.2 102 Dec 13 1982 3 4 488.0
25 Jun 22 1981 421.3 103 Dec 20 1982 486.0
26 Jun 29 1981 416.4 104 Dec 27 1982 482.9
27 Jul 6 1981 435.0 105 Jan 3 1983 493.2
28 Jul 13 1981 3 4 432.3 106 Jan 10 1983 4 5 497.7
29 Jul 20 1981 427.7 107 Jan 17 1983 486.9
30 Jul 27 1981 419.5 108 Jan 24 1983 472.0
31 Aug 3 1981 425.0 109 Jan 31 1983 467.5
32 Aug 10 1981 4 5 433.5 110 Feb 7 1983 477.9
33 Aug 17 1981 427.2 111 Feb 14 1983 3 4 475.5
34 Aug 24 1981 420.0 112 Feb 21 1983 470.5
35 Aug 31 1981 420.8 113 Feb 28 1983 472.5
36 Sep 7 1981 429.6 114 Mar 7 1983 486.3
37 Sep 14 1981 3 4 436.5 115 Mar 14 1983 3 4 484.9
38 Sep 21 1981 427.5 116 Mar 21 1983 482.3
39 Sep 28 1981 415.7 117 Mar 28 1983 476.3
40 Oct 5 1981 430.6 118 Apr 4 1983 497.5
41 Oct 12 1981 3 4 433.5 119 Apr 11 1983 4 4 504.2
42 Oct 19 1981 432.8 120 Apr 18 1983 502.8
43 Oct 26 1981 423.2 121 Apr 25 1983 492.2
44 Nov 2 1981 428.0 122 May 2 1983 489.1
45 Nov 9 1981 3 5 437.1 123 May 9 1983 497.0
46 Nov 16 1981 437.8 124 May 16 1983 3 5 497.4
47 Nov 23 1981 429.2 125 May 23 1983 490.6
48 Nov 30 1981 435.4 126 May 30 1983 488.6
49 Dec 7 1981 4 4 446.5 127 Jun 6 1983 507.3
50 Dec 14 1981 445.3 128 Jun 13 1983 3 4 509.4
51 Dec 21 1981 447.0 129 Jun 20 1983 505.3
52 Dec 28 1981 445.9 130 Jun 27 1983 494.0
53 Jan 4 1982 462.5 131 Jul 4 1983 510.2
54 Jan 11 1982 461.7 132 Jul 11 1983 3 4 519.9
55 Jan 18 1982 3 4 451.4 133 Jul 18 1983 511.7
56 Jan 25 1982 435.0 134 Jul 25 1983 502.1
57 Feb 1 1982 434.2 135 Aug 1 1983 505.4
58 Feb 8 1982 436.5 136 Aug 8 1983 4 5 513.9
59 Feb 15 1982 3 4 434.5 137 Aug 15 1983 513.0
60 Feb 22 1982 428.0 138 Aug 22 1983 506.1
61 Mar 1 1982 430.1 139 Aug 29 1983 499.7
62 Mar 8 1982 439.0 140 Sep 5 1983 513.3
63 Mar 15 1982 3 5 439.0 141 Sep 12 1983 3 4 519.5
64 Mar 22 1982 432.8 142 Sep 19 1983 513.5
65 Mar 29 1982 429.4 143 Sep 26 1983 501.1
66 Apr 5 1982 449.7 144 Oct 3 1983 510.9
67 Apr 12 1982 4 4 456.9 145 Oct 10 1983 4 5 523.4
68 Apr 19 1982 458.2 146 Oct 17 1983 522.3
69 Apr 26 1982 444.9 147 Oct 24 1983 511.9
70 May 3 1982 439.3 148 Oct 31 1983 509.8
71 May 10 1982 445.4 149 Nov 7 1983 523.5
72 May 17 1982 3 5 441.8 150 Nov 14 1983 3 4 526.1
73 May 24 1982 436.0 151 Nov 21 1983 520.9
74 May 31 1982 438.4 152 Nov 28 1983 517.6
75 Jun 7 1982 451.4 153 Dec 5 1983 529.4
76 Jun 14 1982 3 4 452.8 154 Dec 12 1983 3 4 533.0
77 Jun 21 1982 446.3 155 Dec 19 1983 533.2
78 Jun 28 1982 435.5 156 Dec 26 1983 529.4

157 Jan 2 1984 541.3
158 Jan 9 1984 4 5 551.0
159 Jan 16 1984 536.8
160 Jan 23 1984 520.5
161 Jan 30 1984 508.8

DATE DATE

 
 

Figure 7-2.  Data used to produce time correlation factors. 
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 Sample Size Differences Within A Sample Period 
 

 There are many ways to handle the differences in number of samples within a sample 
period.  To approach this problem, one must determine the best space in which to deal with the 
data.  Looking at the periodicity of the data, there are always 52 weeks in a year, and 12 months 
in a year.  However, the week and month boundaries do not fall in the same place, but vary at the 
end of these periods.  In the above example where the data is on a weekly basis, there are 4 
samples in most of the sample periods, but there are 5 samples in four periods in a year.  The 
result will depend upon when one chooses to start and end the sample period. 
 

 Taking this a step further, the yellow highlights typically fall in the last week or first 
week of a month, and this is typically determined by which is closer to the start or end of the 
month.  However, when there are holidays, e.g., Thanksgiving, this may change (see sample 47). 
 

 In trying to determine rules to follow to recognize correlation cycles, it is clear that some 
cycles are 4 weeks and some are 5 weeks.  Sometimes this correlates with the number of days in 
a given month that fall on the published date.  However, this is not always true.  It appears that 
there are 4 times per year where there are 5 sample days in a period (≈ 1 month) - and there are 
always 12 of these periods occurring within the data observed in a year. 
 

 There are 13 cases in Figure 7-2 where there are 5 weeks in a period.  In 8 of these cases 
all 5 samples fall in the same period.  However, in the other 5, one period starts in the month 
before and four periods end in the month after. 
 

 Thus it appears that one can define 12 periods corresponding to each year, where each 
period may contain 4 or 5 weeks, depending upon the peak of the cycle.  If we define the peak to 
occur at the end of the cycle, then the peak occurs in the last week of the period, and may 
correspond to the 4th or 5th week of the period.  Thus the database that is used to represent the 
space and store the data must provide for 4 or 5 week periods. 
 
 
Requirement For More Data 
 

 To perform the correlation analysis, one must consider that the weekly cycles are varying 
with the year as well as the month.  Therefore, one must use multiple years of data to determine 
the parameters to represent the correlation with sufficient accuracy.  Another consideration is the 
nature of the current markets versus those of thirty years ago. 
 

 To consider this, data representing a recent period of 3.5 years is shown in Figures 7-3 
and 7-4.  We note that the cycles appear to be the same.  However, when looking at the data 
shown in Figures 7-1 and 7-2, we find a reversal of the peaks and valleys at the transition points.  
What was colored in yellow before is now colored in orange.  This is because the minimum 
points that were in yellow are now maximum points in orange.  Somewhere between 1984 and 
1998, there was a shift in the time correlation.  However, the structure of the cycles appears the 
same, so that the correlation analysis and resulting data structures remain the same.  Only the 
data changes within the cycles, with the reversal from valleys to peaks at the transition points. 
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 It appears that the transition about the new year causes the same “highest” peak.  
However, it is not clear that there is as much of a change about the April 15th tax deadline. 
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Figure 7-3.  Plot of 3.5 years of data from 2008 to 2011. 
 
 
Defining The Periods 
 

 Because the periods change in terms of numbers of weeks per “month” (4 or 5), and 
because the transitions may occur twice in the same month (e.g., in March), it is best to define 
these cycles in terms of transitions and periods instead of months, even though there are 12 every 
year.  Thus we will define “annual” transitions, even though both may occur in the same year.  
Similarly, we can think of “monthly” transitions, even though there may be 2 in a month.  A 
monthly period may contain 4 or 5 weeks. 
 

 The critical transition occurs around the change of a month, and may take two directions, 
a 4 week period or a 5 week period.  These cycle times may be different for the same month in 
different years.  Since the coefficients will likely be different, we will store two sets for each 
month, and keep a flag indicating the number of weeks for each month.   An example of how 
these may be stored within each year is shown below. 
 

1  PERIOD(12) 
   2  NUMBER_OF_WEEKS        INDEX *** (4 or 5) 
   2  WEEK_4_VALUE(4) 
   2  WEEK_5_VALUE(4) 

 

 To determine the transition between months, one must know the number of days in a 
month (28, 29, 30, or 31).  For example, it appears that for months less than 31 days, the 
transition occurs after the 27th day and before the 3rd day.  For 31 day months, it may start after 
the 28th day, etc.  A more recent example is shown in Figure 7-4. 
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1408 Dec 24 2007 1422.5 1500 Sep 28 2009 1694.1
1409 Dec 31 2007 1455.8 1501 Oct 5 2009 1653.5
1410 Jan 7 2008 1366.6 1502 Oct 12 2009 4 4 1604.0
1411 Jan 14 2008 3 4 1335.6 1503 Oct 19 2009 1646.2
1412 Jan 21 2008 1374.5 1504 Oct 26 2009 1703.2
1413 Jan 28 2008 1398.6 1505 Nov 2 2009 1734.7
1414 Feb 4 2008 1386.8 1506 Nov 9 2009 1640.8
1415 Feb 11 2008 4 4 1325.0 1507 Nov 16 2009 3 5 1638.6
1416 Feb 18 2008 1355.3 1508 Nov 23 2009 1690.3
1417 Feb 25 2008 1383.4 1509 Nov 30 2009 1755.1
1418 Mar 3 2008 1413.4 1510 Dec 7 2009 1659.0
1419 Mar 10 2008 1354.4 1511 Dec 14 2009 3 4 1660.0
1420 Mar 17 2008 3 5 1370.5 1512 Dec 21 2009 1728.2
1421 Mar 24 2008 1417.1 1513 Dec 28 2009 1806.2
1422 Mar 31 2008 1454.0 1514 Jan 4 2010 1788.9
1423 Apr 7 2008 1373.9 1515 Jan 11 2010 4 4 1620.2
1424 Apr 14 2008 3 4 1366.9 1516 Jan 18 2010 1640.9
1425 Apr 21 2008 1419.9 1517 Jan 25 2010 1673.0
1426 Apr 28 2008 1442.1 1518 Feb 1 2010 1707.0
1427 May 5 2008 1403.0 1519 Feb 8 2010 1641.4
1428 May 12 2008 4 4 1356.3 1520 Feb 15 2010 3 4 1675.0
1429 May 19 2008 1380.2 1521 Feb 22 2010 1698.1
1430 May 26 2008 1422.4 1522 Mar 1 2010 1728.3
1431 Jun 2 2008 1438.7 1523 Mar 8 2010 1671.9
1432 Jun 9 2008 1376.7 1524 Mar 15 2010 3 5 1696.2
1433 Jun 16 2008 3 5 1381.4 1525 Mar 22 2010 1745.2
1434 Jun 23 2008 1406.9 1526 Mar 29 2010 1790.0
1435 Jun 30 2008 1455.1 1527 Apr 5 2010 1731.4
1436 Jul 7 2008 1398.3 1528 Apr 12 2010 4 4 1665.5
1437 Jul 14 2008 3 1376.0 1529 Apr 19 2010 1708.7
1438 Jul 21 2008 4 1411.9 1530 Apr 26 2010 1740.9
1439 Jul 28 2008 1451.0 1531 May 3 2010 1772.8
1440 Aug 4 2008 1435.6 1532 May 10 2010 1661.9
1441 Aug 11 2008 4 4 1366.5 1533 May 17 2010 3 5 1673.8
1442 Aug 18 2008 1377.2 1534 May 24 2010 1718.7
1443 Aug 25 2008 1414.6 1535 May 31 2010 1762.2
1444 Sep 1 2008 1445.3 1536 Jun 7 2010 1686.3
1445 Sep 8 2008 1373.0 1537 Jun 14 2010 3 4 1673.9
1446 Sep 15 2008 3 5 1374.4 1538 Jun 21 2010 1735.0
1447 Sep 22 2008 1464.7 1539 Jun 28 2010 1804.4
1448 Sep 29 2008 1534.7 1540 Jul 5 2010 1737.7
1449 Oct 6 2008 1437.8 1541 Jul 12 2010 4 4 1666.1
1450 Oct 13 2008 4 4 1408.5 1542 Jul 19 2010 1692.3
1451 Oct 20 2008 1436.0 1543 Jul 26 2010 1752.5
1452 Oct 27 2008 1512.7 1544 Aug 2 2010 1780.5
1453 Nov 3 2008  1555.4 1545 Aug 9 2010 1690.2
1454 Nov 10 2008 1458.7 1546 Aug 16 2010 3 5 1700.8
1455 Nov 17 2008 3 4 1472.4 1547 Aug 23 2010 1748.7
1456 Nov 24 2008 1532.1 1548 Aug 30 2010 1806.7
1457 Dec 1 2008 1578.8 1549 Sep 6 2010 1720.4
1458 Dec 8 2008 1548.9 1550 Sep 13 2010 3 4 1684.7
1459 Dec 15 2008 3 5 1585.5 1551 Sep 20 2010 1727.9
1460 Dec 22 2008 1648.0 1552 Sep 27 2010 1794.7
1461 Dec 29 2008 1717.9 1553 Oct 4 2010 1783.0
1462 Jan 5 2009 1681.9 1554 Oct 11 2010 4 4 1710.6
1463 Jan 12 2009 4 4 1563.3 1555 Oct 18 2010 1731.7
1464 Jan 19 2009 1539.6 1556 Oct 25 2010 1792.8
1465 Jan 26 2009 1564.1 1557 Nov 1 2010 1823.9
1466 Feb 2 2009 1592.2 1558 Nov 8 2010 1833.7
1467 Feb 9 2009 1521.1 1559 Nov 15 2010 3 5 1747.5
1468 Feb 16 2009 3 4 1530.8 1560 Nov 22 2010 1809.2
1469 Feb 23 2009 1556.8 1561 Nov 29 2010 1904.2
1470 Mar 2 2009 1595.7 1562 Dec 6 2010 1793.6
1471 Mar 9 2009 1550.0 1563 Dec 13 2010 3 4 1779.9
1472 Mar 16 2009 4 5 1563.2 1564 Dec 20 2010 1854.6
1473 Mar 23 2009 1604.6 1565 Dec 27 2010 1963.6
1474 Mar 30 2009 1650.7 1566 Jan 3 2011 1954.6
1475 Apr 6 2009 1671.3 1567 Jan 10 2011 4 5 1779.6
1476 Apr 13 2009 1575.0 1568 Jan 17 2011 1810.7
1477 Apr 20 2009 3 4 1600.5 1569 Jan 24 2011 1838.0
1478 Apr 27 2009 1639.4 1570 Jan 31 2011 1907.7
1479 May 4 2009 1632.7 1571 Feb 7 2011 1803.5
1480 May 11 2009 1568.3 1572 Feb 14 2011 3 4 1804.1
1481 May 18 2009 3 4 1599.1 1573 Feb 21 2011 1874.5
1482 May 25 2009 1647.2 1574 Feb 28 2011 1932.2
1483 Jun 1 2009 1661.8 1575 Mar 7 2011 1843.6
1484 Jun 8 2009 1613.9 1576 Mar 14 2011 3 4 1844.0
1485 Jun 15 2009 3 5 1624.2 1577 Mar 21 2011 1912.9
1486 Jun 22 2009 1676.2 1578 Mar 28 2011 1976.3
1487 Jun 29 2009 1723.7 1579 Apr 4 2011 1950.6
1488 Jul 6 2009 1654.2 1580 Apr 11 2011 4 4 1853.7
1489 Jul 13 2009 4 4 1608.1 1581 Apr 18 2011 1893.0
1490 Jul 20 2009 1640.2 1582 Apr 25 2011 1957.5
1491 Jul 27 2009 1687.6 1583 May 2 2011 1983.5
1492 Aug 3 2009 1711.6 1584 May 9 2011 1876.6
1493 Aug 10 2009 1609.6 1585 May 16 2011 3 5 1888.7
1494 Aug 17 2009 3 5 1634.4 1586 May 23 2011 1945.1
1495 Aug 24 2009 1648.1 1587 May 30 2011 2018.3
1496 Aug 31 2009 1689.9 1588 Jun 6 2011 1917.2
1497 Sep 7 2009 1616.1 1589 Jun 13 2011 3 4 1890.2
1498 Sep 14 2009 3 4 1599.3 1590 Jun 20 2011 1948.9
1499 Sep 21 2009 1632.2 1591 Jun 27 2011 2014.2

1592 Jul 4 2011 2028.0
1593 Jul 11 2011 3 4 1918.1
1594 Jul 18 2011 1937.4
1595 Jul 25 2011 2012.2  

 
Figure 7-4.  3.5 years of data from 2008 to 2011. 
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Algorithm For Selecting Weights 
 

 The following algorithm may be used to select the weights to apply to a given week. 
 

• Start the algorithm immediately following a transition point ( for a new “month”). 
 

• Based upon the month corresponding to the period, determine the days in that period.  
This may be 28, 29, 30 or 31. 

 

• Determine the transition week at the end of the period based upon the days in the 
current month. 

 

• Determine the transition day for the period.  It may be a day in the prior month or in the 
beginning (first 3 days) of the next month. 

 

• Determine the number of weeks (4 or 5) in the current period. 
 

 Given the transition week and number of weeks in the period, obtain the weights from the 
database. 
 
 
Algorithm For Computing The Weights 
 

 To compute the weights for a given week, build a table by year, using enough years to 
obtain a sufficiently accurate statistic.  Note that the periods will change 7 times a year due to the 
rotation of the days of the week.  Thus a minimum of 7 years is needed to get a sufficient 
statistic. 
 

 Within each year, store tables by period number using 12 periods. 
 

 Within each period, store data by week, allowing for 4 or 5 weeks, with two elements per 
week - one each for 4 week periods and one for 5 week periods.  Data for each of the weeks 
within the period must be used to compute the (4 or 5 week) average value for the period. 
 

 Compute the normalized deviations for each week in the period relative to the average for 
the period. 
 

 Add the specific deviations (for each week within each transition period) for all years to 
obtain the sum for the year, and divide by the number of years to get the average deviations (for 
each week within each transition period). 
 
 
Weighting Data By Year 
 

 To obtain more accurate weights when they may be changing over the years, one may 
weight the data by year.  For example, one may use the following formula to adjust the weights 
to reflect more current dynamics: 
 

(YEAR_POINTER + M)
WEIGHT =  

N
 

 

where M is a boosting factor, e.g., 10 years; and N represents a total number of years, e.g., 15.  
This provides a linear bias weighting favoring the recent years. 
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Using The Weights To Improve Prediction Accuracy 
 

 To improve the prediction accuracy, one can use the weights to produce the predictions 
by multiplying the predicted value by the normalized deviations for each week.  To do this, one 
must know the number of weeks in the period to select the correct weights (from the 4 week or 5 
week weights).  The VisiSoft data structure below is used to compute the weights for a year of 
data, i.e., 12 periods per year, and up to 5 weeks per period.  Observations include 
WEEK_COUNT which determines actual number of weeks in that period.  The actual year, 
month, and day are stored as well as the average value of the period, the actual value for the 
week and the deviate. 
 
CALENDAR_WEIGHTS 
    1  PERIOD_STATE                         STATUS START_OF_PERIOD 
                                                   INSIDE_PERIOD 
                                                   NO_MORE_PERIODS 
    1  WEEK_STATE                           STATUS NEW_PERIOD 
                                                   INSIDE_PERIOD 
    1  MONEY_MULT                           DREAL 
    1  CAL_WEIGHT                           DREAL 
    1  PERIOD                               INTEGER 
    1  WEEK_COUNT                           INTEGER 
    1  PERIODS QUANTITY(12)                  
       2  WEEKS  QUANTITY(5)                 
          3  WEEK_4_WEIGHT                  REAL 
          3  WEEK_5_WEIGHT                  REAL 
 
 
 An example of the resulting weights are shown in the table below. 
 

* P           WEEK_4    WEEK_5 
* E    WK     WEIGHT    WEIGHT 
*******************************  
  1     1    -.00187    .01949 
  1     2    -.01101   -.01676 
  1     3    -.00046   -.02254 
  1     4     .03010   -.02092 
  1     5     .00000    .00818 
  2     1    -.00924    .00079 
  2     2    -.02135   -.00535 
  2     3     .00783   -.00294 
  2     4     .06923    .00238 
  2     5     .00000    .01138 
  3     1    -.01327   -.00497 
  3     2    -.01635   -.01934 
  3     3     .01052   -.00569 
  3     4     .07174    .01821 
  3     5     .00000    .05993 
               ... 
               ... 
               ... 
 10     1    -.00901   -.00132 
 10     2    -.01492   -.02935 
 10     3     .00966   -.01886 
 10     4     .05299    .02535 
 10     5     .00000    .07972 
 11     1    -.01348   -.00049 
 11     2    -.03274   -.01333 
 11     3     .00704   -.00848 
 11     4     .11000    .01168 
 11     5     .00000    .03532 
 12     1    -.01781   -.01040 
 12     2    -.02272   -.03723 
 12     3     .01969   -.01398 
 12     4     .09043    .06234 
 12     5     .00000    .09045 
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8. ENVELOPE PREDICTION MODEL 
 
 The envelope model will produce predictions of daily limits within which future prices 
will fall for up to a specified number of days in the future.  The sequence of daily limits 
comprises an envelope over the prediction horizon, e.g., 12 days into the future.  The prediction 
statement is that future prices will fall within the envelope with a specified probability.  This is 
measured by the percentage of times that unseen actual values fall within the predicted envelope 
over some looking-back horizon.  This model will also produce confidence level estimates for 
the probability statement based upon recent history, i.e., history that goes back a given period of 
time, e.g., fifty sets of envelopes.  This is an historic time frame that must be selected based upon 
the changing nature of a specific system. 
 
 
ENVELOPES 
 
 We have used 80% envelopes in the past to determine the probability of being inside.  
We have also used 95% as the confidence level in the envelopes, implying that there is a 5% 
margin of error on the envelopes.  These numbers are used to change the width of the envelopes 
to match the prediction accuracy adaptively.  They are computed based upon a Looking Back 
Horizon (LBH) where 95% confidence implies not being outside the envelopes more than 1 time 
in 20.  In the past, an LBH of 50 time steps was used to obtain the confidence level. 
 
 The envelope model may adaptively open up or close down the envelope to maintain a 
statistical confidence limit for the prediction probabilities.  This model will determine the width 
of the deviates at each time point in the future to insure that the future prices fall within the 
envelopes 80% of the time.  It will be adjusted to obtain a 95% confidence level in the 80% 
envelopes. 
 
 A prediction is described by the envelopes, within which the predicted value must fall a 
specified percentage of the time (e.g., 80%) with a specified confidence level (e.g., 95%) over a 
prescribed looking-back horizon (e.g., a 50 data point ensemble), for a prescribed historic time 
frame (e.g., 250 data points). 
 
 The test for meeting the confidence level criteria requires multiple ensembles of 
contiguous data points looking back into the past.  For example, using three years of weekly data 
(our historic time frame) would produce 3 x 52 = 156 points.  With an ensemble length of 50, 
there are 106 ensembles of contiguous points that overlap by all but one point.  Then at least 
95% of those ensembles must have at least 80% of the actual points fall within the predicted 
envelope. 
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Updating Envelope Estimates 
 
 Figure 8-1 illustrates envelopes (e.g., 80%) used to characterize predictions.  The current 
set of residuals is used to update envelope estimates.  One must determine the number of times 
that the actuals, Z(T), went outside the envelope, for each prediction step, for each time step in 
the looking back horizon.  Then one must use the number and size of the violations to expand or 
contract the envelope.  To be conservative, the expansion must be accelerated faster than the 
contraction. 
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Figure 8-1.  Observation Data, Prediction Matrix & Residuals Matrix. 
 
 
 
Initial Envelope 
 
 We are concerned with producing initial values for the low and high envelopes for each 
prediction step: 
 
 ENV_LO(TP) & ENV_HI(TP)   for TP = 1, 2, ..., TPQ 
 
 One approach to determine values for an initial envelope is to compute the distance from 
the mean of a distribution to determine the probability of being inside the boundaries as 
illustrated in Figure 8-1.  For example, if the distribution is normal, one may use 1.5 standard 
deviations from the mean (≈ 82%) as shown in Figure 8-2 to achieve an 82% probability 
envelope. 
 
 Thus, assuming that the predicted values ZP at TP time steps in the future represent the 
mean of a normal distribution, one may multiply the mean deviations at each time step by the 
number of standard deviations required to produce an initial envelope with the desired 
probability of being within the envelope.  This initial envelope may then be used to compute 
actual statistics for remaining inside the envelope over the looking back horizon as actual data is 
infused.  This approach will provide for updated predicted values for the envelope widths at each 
future time step. 
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Figure 8-2.  Using the standard deviation to determine probability limits. 
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Updated Envelopes 
 
 Given that the initial envelope widths are used to collect statistics over the first look-back 
horizon, one can proceed to use the incoming observation data to determine the actual statistics 
of being outside the envelope.  If the number of times one is outside the envelope over the look-
back horizon exceeds 20%, then one must increase the width of the envelopes to maintain the 
80% probability.  If it is sufficiently less than 20%, then one may reduce the width of the 
envelopes.  What is clear is that one wants the width of the 80% envelope to be as small as 
possible. 
 
 
Minimizing The Envelopes 
 
 When using two driving forces, one may determine that the data is moving up and down 
beyond the envelopes derived from these forces alone.  What may be needed is another driving 
force that operates in conjunction with the others to predict the future states.  Alternatively, one 
may find that, after characterizing the first two driving forces, a high correlation now exists with 
the calendar. 
 
 Chapter 13 describes how one can optimize the parameters in each submodel using 
VisiSoft, producing more accurate results for each driving force.  As a final step this may be 
done for a calendar correlation model.  An example of the result of such a model is illustrated in 
Figure 8-3.  As illustrated by this model, the envelopes moved up and down with the data. 
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Figure 8-3.  Using the standard deviation to determine probability limits. 
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Dealing With Volatility 
 
 Market volatility must be tracked to determine the confidence in the predictions.  As 
markets become more volatile, there is a greater chance of large swings, and the possibility of 
higher profit, but inherently more risk of loss. 
 

 The envelopes must be widened when the 80% rule is violated more than 5% of the time.  
The 5% accounts for the confidence margin, but may be too optimistic.  In any event, the 
envelopes should be widened faster than they are narrowed, and this must be assessed 
statistically to ensure that the defined percentages are maintained.  The widening occurs because 
the prediction model is not sufficiently accurate, implying that additional information is not 
being accounted for (it may not be available and must be treated as random variations).  For 
example, when people start running scared, they may be considered as overreacting by the 
marketeers, but in fact they are protecting their assets.  When such variations occur, the control 
system should signal to stop trading (get out of the market) because of the unpredictable swings 
that may be too large to cover. 
 
 
Envelope Controls 
 

 Decisions to Open/Close the envelopes may be based upon the points closest to the 
envelope boundary.  This implies ordering the points based upon nearness to the boundary.  For 
example, those within X% of the boundary could be weighted based upon nearness and counted 
on a weighted basis to determine how much to open or close the envelope.  One can also 
consider the open/close process to occur on a prescribed incremental basis (e.g., prescribed 
notches). 
 
 
Predicting Future Time Steps 
 

 When performing future predictions, the model is used to produce predictions at each 
new major time step, T, i.e., where outcomes are recorded for future values.  For multi-step 
prediction, the clock is advanced multiple time steps into the future.  Then it must be set back to 
the next actual time step to update adaptive model parameters.  This is followed by another set of 
prediction steps. 
 

 When the prediction steps are produced, databases that store the prediction information, 
e.g., the envelope values, must be updated.  These are stored for tracking the width of the 
envelopes to make adaptive decisions on the future width required to maintain specified accuracy 
measures.  These computations require tracking prediction steps as well as the normal time steps.  
 

 Finally, one must maintain a “Looking Back” horizon over which we compute: (1) the 
probability of being inside the envelope; and (2) the confidence level in the probability 
statement.  As described in Chapter 3, choice of this horizon depends upon the trade-off of 
having enough samples versus ensuring that the model represents the current time frame, which 
is of special concern when using adaptive parameter optimization. 
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9.     THE CONSTRAINED OPTIMAL CONTROL PROBLEM 
 
 To solve the real problems of controlling complex systems that are subject to dynamic 
parameter variations, one must solve the constrained optimal control problem.  This chapter 
describes the elements required to address the problem of finding the best solution while meeting 
hard (inequality) constraints.  We will start by looking at the time-invariant (single time point) 
problem. 
 
 
Objectives And Constraints 
 
 As described in the linear or nonlinear programming literature, optimization problems are 
defined in terms of objectives to be optimized and constraints that must be met.  Except for 
special (rare) cases, there is only one optimal solution.  So objectives are generally grouped and 
weighted into a single objective function.  In practice, the constraints are more important than the 
objective function in that they must be satisfied to provide a feasible solution.  This translates to 
the selection of a control sequence, or set of actions that, when applied as inputs to a system, 
yield a response that satisfies the operational constraints for that system.  Examples of such 
constraints are: limits on risk of failure or catastrophe, limits on time, limits on personnel, limits 
on fuel, limits on platform availability, flight path restrictions, communications restrictions, etc.  
These are referred to as hard constraints, in that a violation of any such constraint renders the 
selected control sequence unacceptable (i.e., the solution infeasible). 
 

 Constraints may be mapped onto the n-dimensional space of parameters that affect them 
in terms of a vector of variables, V.  Constraints are then posed in terms of the variables in this 
space such that a constraint function H is positive when the constraint is satisfied and negative 
when it is violated.  The boundary of a constraint is represented by a surface defined at H(V) = 0.  
Figure 9-1 below illustrates such a mapping for four constraints viewed in a 2D space. 
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Figure 9-1.  Hard constraints defined by surfaces Hi(V) = 0. 
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 By visualizing the surfaces Hi(V) = 0 (the curves bounding the region R in Figure 7-1), 
one can interpret this geometrically.  A solution, Vo, is defined as feasible if it satisfies all the 
constraints.  If all points inside the region R ensure that all of the values of the Hi are greater 
than zero, then R is defined as a feasible region, bounded by the constraint surfaces Hi(V) = 0.  
For example, a constraint on the probability of being engaged by a missile will depend upon 
where one travels in x, y, z space.  A constraint on fuel will depend upon altitude and distance 
traveled, a function of the way points of a flight path in (Lat, Lon, Altitude) or (x, y, z).  It may 
also depend upon the position of refueling tankers - a different set of parameters.  The dimension 
of the constraint parameter space can be quite large.  In the case of nonlinear systems, there may 
be more than one feasible region. 
 

 Note that this illustration may be for an instant of time, implying that Figure 7-1 is a 
snapshot from a trajectory in time, showing only the spatial parameters.  We will limit the 
current discussion to be independent of time and deal with trajectories in time in a later section. 
 

 The feasible region in Figure 7-1 appears large.  This is done to illustrate the definitions.  
In practical problems, the vector V will depend upon many parameters that affect at least one of 
the constraints.  If the parameter vector, Vo, moves outside the region R, at least one of the 
constraints is violated.  Typically, only a subset of the parameter vector will be optimized. 
 

 In addition, the constraint surfaces can be very nonlinear functions of the parameters.  In 
a large parameter space, it may take a significant effort to develop the complete set.  There have 
been studies of such constraint surfaces for various problems, and it is known that they can take 
on exotic shapes.  This can make the feasible region very small in areas of the space.  Depending 
upon how the problem is posed, it is not unusual for the feasible region to occur in multiple 
disconnected sets, or to be non-existent. 
 
 
Accounting For Parameter Variations 
 

 In most real problems of interest, the actual values of parameters will vary.  For example, 
a refueling tanker may have been tasked to follow a given flight path, but circumstances may 
cause it to vary off the prescribed path.  Target positions will be known to within some range of 
error.  Radar coverage may not be known precisely.  This implies that we only know the value of 
many parameters to within a distribution.  We may not know the shape of the distribution, and 
may only have some knowledge of its bounds - in terms of percentile limit values.  This is the 
classic worst-case design problem.  We will not delve into the details here, but will outline it and 
provide references for detail. 
 

 Figure 9-2 illustrates a simple case of what happens when parameter variations are taken 
into account.  If Vo is the selected (nominal) solution, and we apply all of the possible variations, 
T, on each parameter, a region ro will be created as shown.  Thus, ro is the region of all possible 
values of parameter vector V, determined by applying all possible variations on these parameters 
within a specified set of limits on their distributions.  This implies that all of the points in ro must 
remain in R, else a constraint may be violated and the solution no longer feasible.  This is a 
complex problem to solve directly, and one typically resorts to Monte Carlo analyses to 
determine the probability of violating a constraint.  An alternative approach is to perform a 
constraint transformation as defined by Cave, [5], using T in the space of all possible parameter 
variations.  This is illustrated in Figure 9-3. 
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Figure  9-2.  Possible variations of the solution due to parameter variations. 
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Figure  9-3.  Transforming the constraint boundaries using optimization. 
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 The solution illustrated in Figure 7-3 has been verified using Computer-Aided Design 
(CAD) techniques, see [6], and [7].  A simplified derivation is as follows.  For each point, Vo*, 
on a selected constraint boundary, H, we can determine the value of T = T* that causes 
H(Vo* + T*) to be most negative.  These values form the inner region R* bounded by the 
surface H(Vo* + T*).  Applying this to all of the constraints transforms the original feasible 
region into a smaller region, R*, such that, if a solution, Vo, falls within the transformed region, 
it will meet the prescribed constraints under worst case conditions.  This is described in further 
detail in [5]. 
 

 A major benefit of this approach is that it supports direct optimization and therefore 
synthesis of a solution that meets worst case constraints.  One avoids the iterative approach of 
finding feasible solutions and then running Monte Carlo analysis to determine if constraints are 
violated.  It is a proven technique that has been used extensively to solve difficult worst case 
design problems. 
 
 
Worst Case Design / Optimization 
 

 Before considering optimal solutions, one must further investigate the worst case 
problem, i.e., searching for the feasible region after applying the worst case transformation.  By 
“worst case”, we are implying combinations of variations that can realistically occur 
simultaneously.  To properly account for these variations, one must estimate the probabilities of 
such variations occurring.  This implies characterizing the probability distributions of the 
variations to the extent that the bounds may be sufficiently estimated.  Figure 9-4 provides an 
illustration of a probability distribution where the light green shaded area represents the 
probability of being within the bounds [Vo-TD, Vo+TU].  Alternatively, one may determine the 
probability of being outside these bounds, or above the Vo+TU boundary.  Given that one can 
estimate these boundaries and probabilities, they may be used to determine the probability of 
failure of a system or a mission. 
 

P (V  Vo)

Vo Vo + TU  V  Vo - TD   
 

Figure  9-4.  Defining the constraint boundaries for optimization. 
 

 
 Estimating such bounds and probabilities may appear quite difficult.  However, any form 
of estimate generally leads to much more information regarding the likelihood of failure.  For 
example, one may consider that crossing a certain boundary yields a high probability of failure, 
and is considered a GO - NO GO or 1 - 0 situation.  In this case, the boundary is the constraint.  
Knowing the shape of the distribution is not important, but one must know the bounds. 
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Using Human Judgment 
 

 A practical example of constraint boundaries is the requirement to stay out of a restricted 
area, where crossing any of the boundaries into such an area violates the constraint, rendering the 
solution a failure.  In this case, human judgment may be the best way to determine where to 
define the bounds to ensure a safe estimate.  Another example is the requirement to stay within 
certain boundaries, e.g., a playbox, where going outside violates the constraint.  Such boundaries 
may be defined geometrically as shown in Figure 9-5 below, where the yellow boundary 
represents the playbox and the red boundaries represent restricted “no-fly” zones. 
 

 
 

Figure  9-5.  Defining constraint boundaries for optimization. 
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 Another example is the constraint on fuel.  When optimizing flight paths in air and space, 
one must be concerned about the constraints on fuel.  Because of the variations on use of fuel, 
the flight time to run out of fuel may be characterized by an error distribution.  Again, the 
problem of where to draw the line for a given airplane on a given set of missions is best 
estimated with the help of human judgment.  In the case of military air flights, one may be able 
to refuel to achieve an acceptable solution.  We note that the difference between the solution 
using refuel and one with no refuel is typically highly nonlinear (again GO - NO GO), falling 
into a category known as the bang-bang control problem. 
 

 The overall problem illustrated in Figure 7-5 is that of optimizing way-points for a flight 
path so as to maximize radio connectivity with ground convoys.  Again, the use of human 
judgment is likely to be best when determining many of the constraints.  However, there are 
cases such as those described below that require a mathematical approach to varying parameters 
that may cause the constraints to be violated. 
 

 One may question the mix of human judgment and mathematics.  This was discussed in 
Chapter 1 and subsequent chapters, with the conclusion that any approach that adds a sufficient 
amount of additional information will help to improve prediction accuracy.  By sufficient amount 
we imply that the level of information is sufficiently greater than the level of noise in the data 
being considered. 
 
 
Determining Worst Case Constraint Boundaries 
 

 As defined in the section above on parameter variations, constraint boundaries may be 
defined at H(V) = 0 , where the vector of constraints, H, is defined in (7-1) below. 
 

(9-1)   
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 One may define the constraint boundaries such that all of the constraints are met when 
H(V) ≥ 0 .  We note that some or all of the elements of the solution vector may affect the value 
of a given constraint function.  Given a nominal solution vector, Vo, one must consider the 
parameter variations about nominal that determine the V vector.  These variations are defined by 
the T vector in (9-2) below (often referred to as the tolerance vector in engineering systems). 
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 It is important to understand that each tolerance component, ti, is associated with the 
corresponding nominal component, voi, as shown in (9-3) below. 
 

 (9-3)   
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As stated above, a critical part of the problem is identifying the limits, Td and Tu, on the 
tolerance variation components.  This is illustrated in (9-4). 
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 Given that Td ≤ T ≤ Tu, one must find the vector T* that minimizes each constraint 
function.  This produces the worst-case transformation on each of the constraint boundaries as 
shown in Figure 9-3.  Then, given that a nominal vector Vo can be found that meets the 
transformed constraints, one searches for the nominal vector that maximizes the objective 
function. 
 
 
Finding Stable Feasible Solutions 
 

 In practice, it is not unusual for the transformed feasible region to be null, i.e., the 
feasible region has disappeared (there are no feasible solutions).  This implies that the problem as 
posed cannot be solved without violating one or more constraints under worst case conditions. 
 

 In this case, one must go back and rethink the problem, and this usually means relaxing 
one or more constraints or changing the overall design architecture to get a solution.  One can 
then analyze different solutions and determine which constraints are hard to meet. Alternatively, 
with good optimization techniques, this information may be produced as a by-product of the 
feasible search process. 
 

 Before moving on to the optimal control problem in the time domain, there are two other 
problems that must be addressed when attempting to solve highly nonlinear constrained 
optimization problems.  First, it is not unusual to find multiple disconnected feasible regions.  
This means that the optimization algorithms must be able to seek out multiple regions for better 
solutions. 
 

 Second, solutions may be unstable.  In the case of a feasible solution, this occurs when 
the solution is not a worst case solution but is very close to a constraint boundary.  This implies 
that a very small change will render the solution infeasible, i.e., one or more constraints is easily 
violated.  At this point, judgment must be used.  Either these conditions must be anticipated and 
accounted for in advance, or a decision must be made on the spot.  Again, with good 
optimization techniques, this information may be a by-product of the feasible search process. 
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 Another form of instability occurs with optimal solutions when the objective function has 
very narrow peaks.  Again, with very small changes in the solution, large changes can occur in 
the value of the function being optimized.  In a very nonlinear problem, this can be significant.  
All of these difficulties may be accounted for and alerted using good optimization techniques.  
Alternatively, one may have to resort to Monte Carlo analysis. 
 
 
The Worst Case Optimal Control Problem 
 

 As indicated above, a control sequence implies a trajectory in time, e.g., a flight path.  In 
the constrained optimal control problem, if there is a feasible region, the control sequence (and 
resulting trajectory) is bounded by a constraint manifold in time and space.  This is illustrated in 
Figure 9-6.  Instead of finding a solution to stationary problems as described above, one must 
find a sequence of steps that weaves a trajectory through this manifold without going out of 
bounds.  Clearly, this is a much more difficult problem to pose and solve.  This problem - finding 
a sequence of controls that weaves the critical system parameters through a set of constraint 
boundaries without a violation - is the worst-case constrained optimal control problem. 
 

Parameter space V(T)
CONSTRAINTS  7/2/10

T = 0  (boundary of R)

R*

MANIFOLD IN SPACE

T = T * (boundary of R*)

R

R*

 
 

Figure  9-6.  Transforming the constraint boundaries using optimization. 
 
 
 Figure 9-6 is a simplified illustration of a problem in 3 dimensions parameterized in time.  
Most often, the parameters to be controlled are represented by a much larger state vector.  Over 
the course of a scenario, such real world manifolds of interest may take on very complex shapes, 
being multi-valued as well as nonlinear in space.  As a function of time, they are likely to be 
highly nonstationary as a result of nonhomogeneous inputs. 
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 This all implies that they cannot be addressed in a typical analytical sense 
mathematically.  Typically, the dynamics of such a system must be simulated based upon event 
driven scenarios.  To solve the constrained optimal control problem for a complex system, one 
may have to run large numbers of simulations, first to find a feasible solution, and then to find 
the optimal solution. 
 
 
 



 

 

Prediction Systems, Inc.      PREDICTION THEORY               Page 66  

10. THE STOCHASTIC CONTROL PROBLEM 
 
Nonstationary Considerations 
 

 If we want to predict complex system responses, we must be able to model systems 
driven by forces which are neither stationary nor statistically characterized, i.e., they are bounded 
but unknown.  When driving forces contain random components as well as known functions of 
time, the model may be reformulated so that only its random portion acts as the driving force.  
As stated above, any known functions of time contained in the driving forces can be treated as a 
homogeneous part of the system model.  It is also possible for stationary random forces to be 
similarly recast as model error.  See for example Papoulis, [23].  Hence, models can be 
structured so that only nonstationary components remain as driving forces. 
 

 As experienced by the author, nonstationary driving forces have a significant influence 
on the state of most real world systems.  Homogeneous models of these types of nonstationary 
systems are likely to be subject to significant prediction error.  Building nonhomogeneous 
models represents a difficult part of the problem.  As an aid to solving this problem, the state 
space framework provides a conceptual partitioning of the driving forces of a nonhomogeneous 
model.  The modeler can decide whether the known functions of time or statistically stationary 
components of the state of a system are best represented by driving forces, or by a homogeneous 
model.  It is this conceptual framework which makes the state space framework an attractive tool 
for modeling nonstationary systems. 
 

 As defined in Chapter 5, the general form of equations for a linear dynamic system may 
be represented in state space as follows, 
 

(10-1)  X(T+1) = f[X(T), U(T), T], 
 

where X is the vector representing the state of the system at any time T, where T and T+1 are 
just pointers to successive time steps that may vary in size.  The state transition operator, f, takes 
the system to subsequent states, and U is the external driving force vector at time T.  The 
observation equation is represented by, 
 

(10-2)  Z(T) = h[X(T), T], 
 

where Z is the observation vector and h is the transformation from state X to observation Z at 
any time T.   In the case of a nonlinear system, the general form of the state transition equation is 
given by 
 

(10-3)  X(T+1) = f[X(T+1), X(T), U(T), T] . 
 
 The general linearized form of a nonlinear dynamic system may be formulated as 
follows, 
 

(10-4)  X(T+1) = F(T+1, T) X(T) + B(T) U(T), 
 

where F(T) contains nonlinear coefficients in X(T+1).  The nonlinear solution may be obtained 
using iterative methods, e.g., describing functions.  The measurement model is given for any 
time T as follows, 
 

(10-5)  Z(T) = H(T) X(T). 
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Stochastic Considerations 
 

 Most systems of interest encounter disturbances which cannot be controlled or modeled 
deterministically.  Observations of driving forces and system responses can also be corrupted.  
Such phenomena cause uncertainties, leading to the incorporation of error terms in the model 
which are characterized stochastically.  This leads to the stochastic representation of our model 
as 
 

(10-6)  X(T+1) = f[X(T+1), X(T), U(T), T, W(T)] 
 

(10-7)  Z(T)     = h[X(T), T, V(T)] 
 

where  W(T) represents uncertainty in the dynamic model, and  V(T) represents uncertainty in 
the observation mechanism.  Reference Kalman, [20]. 
 

 To start we assume that a deterministic model has been built such that the statistics of the 
uncertainty elements, W and V, can be characterized as normally distributed random processes 
with zero means, and covariance matrices given by 
 

(10-8)  Q(T) = E[W W ] 
 

(10-9)  R(T) = E[V V ]. 
 

 Determining values or bounds for these covariance matrices is part of the model 
identification process.  Depending upon the design process as described in the previous chapter, 
one may want to reduce this requirement to distributions that are unknown but bounded.  This 
requires a tailored process for characterization of the stochastic processes that are used to project 
the prediction error. 
 

 We will view stochastic processes as generally being composed of known functions of 
time and functions which appear to vary randomly.  Referring to Figure 10-1, Z(T) depends upon 
X1(T), a known function of time, and W1(T), which appears to vary randomly with time, through 
transformation H1.  It may be possible to further investigate W1 (T) to reduce the random 
component, as indicated in Figure 10-2.  Thus, the error in Z(T) is reduced by adding 
information X2 and H2 relative to H1. 
 

X1(T)

TRANSFORMATION
H1

Z(T)
W1(T)

Chapter 7  02/07/06  
 

Figure 10-1.  Transformation H1 with W1 as random. 
 
 

X1(T)

Z(T)
H1X2(T)

H2
W2(T)

Chapter 7  02/07/06  
 

 Figure 10-2. Transformation H2 with W1 broken into known and random components. 
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 Referring back to Figure 5-1, what we actually observe may not agree with our 
conceptual model of the observation mechanism, and how it relates the state of the system to the 
response.  At this point, one could say that the actual observation mechanism contains error, and 
terminate further modeling efforts.  However, as in engineering, we will assume that the 
modeler's task is to model the actual mechanism completely and accurately, particularly with 
regard to any biased errors it contains.  However, regardless of the accuracy of the actual 
observation mechanism, our observation model may be in error, and this must be accounted for.  
Thus, if V(T) is nonzero, then we have no direct inverse for obtaining the actual value of X(T), 
and therefore can only estimate the current state of the system using all observations up to and 
including the current values. 
 
 
Nonhomogeneous Models - Noise Considerations 
 

 When considering the addition of a candidate driving force to our model, we must be 
aware that the observation data for that driving force typically contains noise (error) as well as 
information.  Figure 10-3 illustrates driving force U1, contributing to orthogonal information 
components I1 and I2.  If U2 is independent of U1, then it will contribute additional information 
on I1 and I2.  However, adding U2 will also bring in the additional noise (error) associated with 
the U2 data set. 
 

noise (error)
I2

U2 U1

I1
Chapter 7  02/07/06

 
 

Figure 10-3.  Independence of information content relative to size of noise. 
 

 
 If U2 is close to U1 relative to independence of the information content, then the modeler 
must be concerned about the amount of noise (error) being introduced relative to the amount of 
information.  Theoretically, this is a difficult problem to address, and is beyond the scope of this 
treatment.  From a practical standpoint, which is our interest, the relative amount of information 
content in any candidate driving force can be tested by incorporating it into the model and 
determining if prediction accuracy improves.  We must be aware that modeling error is likely to 
improve if additional coefficients are added, and a good nonlinear optimization algorithm is used 
to identify these coefficients.  However, prediction error is the measure to be used to determine 
the benefit of adding a candidate driving force.  Finally, the model modifications required to 
extract the additional information from the data set are critical to improvements in prediction 
accuracy, and this kind of modeling requires a thorough understanding of the underlying system 
mechanisms being represented. 
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Closed Loop Considerations 
 

 The previous illustration shown in Figure 5-1 is known as an open-loop process, i.e., one 
where information comparing the actual observed output and predicted response is not fed back 
to the model.  A closed loop process is shown in Figure 10-4.  Here, we can compare the 
predicted response Ζ to the observed response Z, and use this information to improve our 
estimate of the current state of the system.  In this figure, a Kalman filter is depicted as the 
estimator of the current state. 
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Figure 10-4.  Using observation feedback to improve the estimate of the current state. 
 
 Let's now look back at our prediction of the current state of the system at time T.  This 
was based on our dynamic model, conditioned on all information available up to and including 
time T-1, before the measurement of Z(T).  We will refer to this as the current state prediction.  
The notation commonly used is 
 

(10-10)   X-(T)  =  X(T|T-1) 
 

After Z(T) is observed, the current state can be re-estimated, conditioned on all information 
through time T, i.e, 
 

(10-11)     X+(T)  =  X(T|T) 
 

 Various mechanisms, e.g., the Kalman filter, [20], may be used to provide optimal 
updated estimates, X+(T), when added to the model as indicated in Figure 10-4. 
 

 We have purposely used X(T) to represent the current state and X(T-1) to represent the 
prior state, as opposed to X(T+1) being the predicted state and X(T) the current state.  This is 
done to emphasize the purpose of the filter.  Estimators or filters provide an optimal means for 
estimating the current state of the system based on all information available at the current 
time T.  By definition, a filter is not a predictor.  Predictions, at future time (T + τ), are 
accomplished by the dynamic model. 
 

 The filtering property does provide a facility to test models for consistency of short term 
predictions over large data sets.  It can also be used as a tool to "filter" out phenomena which 
may obscure that which the modeler is trying to identify.  In general, given the model 
 

(10-12)     Ζ (T+τ)  =  C[U(T), Z(T)], 
 

the filter can be used as an aid in determining the best U and C. 
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 Suppose, for example, we wish to optimize a model that provides 10 day predictions for a 
commodity market.  Assume we plan to use 1000 days of history to identify model parameters.  
If driven open loop, the model ΖO(T) may drift far from the actual response, Ζ, after a few 
hundred days, reference Figure 10-4.  The short term (10 day) prediction error is difficult to 
detect due to the much larger long term error.  By adding the filter, the long term error can be 
virtually eliminated (filtered out) through the current state tracking process which the filter 
obtains from the observation data, yielding ΖC(T). 
 

 To accomplish this, the Kalman filter is derived to maximize orthogonality between the 
model error vector and response vector by minimizing the expected value of their inner product 
 

(10-13)   Φ   =   Ε [{C[U(T), Z(T)] - Z(T+τ)},  Z(T+τ)] 
 

Refer to Papoulis, [23], for a further discussion of the orthogonality properties of the filter. 
 

 Using the filter this way, one can find C and U more quickly and with less error.  This 
helps to improve overall accuracy of the prediction model.  In addition, if it can be determined 
that the error covariance matrices are nonstationary, then the filter can be designed to "adapt" to 
changes in the error statistics, see Gelb, [14], and be incorporated as part of the prediction model 
itself. 
 

 When using filters as indicated above, one must be concerned about the ability to 
separate the time constants of the various processes and the associated frequencies of change in 
the system being modeled.  If these frequencies are too close, it can be difficult to separate them 
with the filter.  Furthermore, when building adaptive filters, the separation of frequencies will be 
changing as the error properties are changing.  These considerations impose practical limitations 
on the use of powerful tools from engineering, where one may have the fortune that systems can 
be designed to have widely separated time constants, ensuring that the filters will work well.  
However, this is not always the case.  Below we present the basic form of the Kalman filter. 
 
 
Computational Aspects Of The Kalman Filter 
 

          A diagram of the state vectors associated with the Kalman filter are shown in Figure 10-5. 
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X(T) X(T+1) Z(T+1)

Z(T+1)X  (T+1)
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Figure 10-5.  Vector diagram of the Kalman filter. 
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 The equations associated with the basic Kalman filter will not be derived here since they 
are derived in a multitude of readily available sources.  In this author’s view, one of the clearest 
derivations was done by Papoulis, [23], using the orthogonality principle as the basis for 
maximizing the amount of additional information being used. 
 

 In the diagram in Figure 10-5 above, one starts at the state X(T) and makes a single step 
prediction using the model described in the following equation, 
 

(10-14)   X (T+1) = X(T+1 T) = F(T)  X(T T) . 
 

In this equation, the minus sign after X is used to denote the a priori prediction, where the state at 
T+1 is predicted at time T.  This implies that the probability statement is conditioned on 
information only up to time T.  This can be extended to T+τ, as indicated in Chapters 5 and 6, 
but to minimize the complexity of the equations presented here we will stay with single step 
prediction.   
 

 Once time advances, and the observations are available, the current state estimate may be 
updated using the Kalman operator, K, on the observed residuals δz, 
 

(10-15)   X (T+1) = X(T+1 T+1) = X (T+1) + K(T+1) δZ(T+1), 
 

where the observed residuals are given by: 
 

(10-16)   δZ(T+1) = Z(T+1) - Z(T+1) . 
 

 The Kalman operator is given as follows, 
 

(10-17)   K(T+1) = PX(T+1) H (T+1) [PZ(T+1)] 1 
 

where Pz represents propagation of the observation error covariance,  
 

(10-18)   Pz(T+1) = E[δZ(T+1) δZ(T+1)], 
 

and Px represents propagation of the state error covariance,  
 

(10-19)   Px(T+1) = E[δX(T+1) δX(T+1)].  
 

Then 
 

(10-20)   PZ(T+1) = H(T+1) PX(T+1) H (T+1) + R(T+1) , where 
 

(10-21)   PX (T+1) = F(T) PX (T) F (T) + Q(T), and 
 

(10-22)   PX(T+1) = [I - K(T+1) H(T+1)] PX(T+1)  
 

is the state error covariance matrix predicted for the next time step. 
 

 The above equations represent the basic Kalman filter (estimator).  There are many 
approaches that may be applied to improve the accuracy of a filter for different systems.  
Examples are adaptive filters, nonlinear or extended filters, etc.  In addition, innovative 
techniques may be applied using more state variables to estimate changing parameters in models 
of the system and the environment.  Multi-step prediction becomes a complex bookkeeping 
problem, requiring tracking and matching all the residuals at each time step into the future so that 
observations may be applied if and when they are available.  Finally, a good understanding of the 
mechanics of the system and its environment is most important when trying to improve accuracy. 
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11. DEFINING THE PREDICTION PROBLEM 
 
 
 With the framework provided in the previous chapters, we can now proceed to define the 
prediction problem. 
 
 
System Uncertainty 
 
 Based upon the above, we define an uncertain process as follows.  Recall that a process, 
Z(T), is said to appear random when no transformation C can be found for which  
 
(11-1)   E [C[Z(T)], Z(T+τ)]    ≥   ετ,     for any τ > 0. 
 
For nonhomogeneous systems, we say that Z(T) is an uncertain process relative to driving force 
U(T) when no transformation C can be found such that, for any τ > 0, 
 
   E [C[U(T), Z(T)],  Z(T+τ)]   ≥   ετ  
 
System Predictability 
 
 We say Z(T) is a predictable process of order τ when a driving force U and 
transformation C can be found such that for τ > 0, 
 
(11-2)   E [C[U(T), Z(T)],  Z(T+τ)]  ≥   ετ 
 
We note that a process which appears random by standard statistical tests can be predictable 
since, based on our example of Figure 6-2, Z(T) can be a delayed function of a purely random 
process U(T).  This represents a generalization of the Markoff Process, being conditioned on 
(nonhomogeneous) driving forces, observed τ states back. 
 
 Referring again to Figure 5-4b, we see that the process shown is predictable of order four, 
and that no error is incurred.  Should we attempt predictions five steps into the future with this 
model we incur an error, since an impulse at the next (future) time step will effect the response 
five steps from T0.  This is a prediction error due to the inherent order of predictability of the 
system.  This must be distinguished from the model or observation error (described in Chapter 7 
under Stochastic Considerations) which is generally treated in control theory literature.  We are 
assuming, of course, that the driving force has unpredictable components.  When we construct 
state equations containing error terms, we must incorporate an additional error term beyond 
those reflecting uncertainty in the model and in the data.   
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Modeling or Estimation Error 
 
 The following measure is offered to optimize the choice of U and corresponding 
transformation C.  We want to find C(T) and U(T) such that  
 

(11-3)   Φ(C, U)   =   D [C[U(T), Z(T)],  Z(T+τ)] 
 

is minimized, where D is some measure of distance (e.g., mean absolute deviation) between the 
predicted response based on the model, 
 

 (11-4)   Z(T+τ)   =   C[U(T), Z(T)]   =   Z(T+τ|T) 
 

and the actual response Z(T+τ).  For example, C and U can be selected to minimize the mean 
absolute error function 
 

 (11-5)   ê- (C, U, Z)   =   ê [Z (T+τ|T),  Z(T+τ)] 
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A similar measure would be to minimize the mean square error.  We note that the selection of U 
and C depend, in general, on τ.  In practice, one can select the value of τ most critical to the 
application.  Or, some functional combination of ê- at various values of τ can be used. 
 
 However, once we use (11-5) as a performance measure in an optimization process, then 
information at  T+τ  has been incorporated into the model.  Therefore, 
 

 (11-6)  Z(T+τ)  =  C[U(T), Z(T), Z(T+τ)]  =  Z(T+τ|T+τ), 
 
is not a true prediction - it is an estimation - and any future error measure will be of the form 
ê+(C, U, Z). 
 
 
Correlating Prediction Error to Modeling or Estimation Error 
 
 The measure ê used for modeling error can also be used for prediction error.  What is 
important is that the data sets are different.  All data up to the current time T can be used to 
optimize C and U so as to minimize ê+(C, U, Z), providing an optimal estimate.  Future data 
beyond the current time must be used to measure prediction error.  If reductions in modeling 
error do not correlate to reductions in prediction error, then the modeler has no consistent method 
for improving model accuracy in a way that reduces prediction error. 
 

 To summarize, if the same error function, e.g., ê in (11-5) above, is used to measure both 
modeling error and prediction error, the difference in the measures is essentially the use of 
previously available data versus the use of unseen “future” data. 
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12. MODELING APPROACHES TO SUPPORT PREDICTION 
 
Stationary Versus Non-Stationary Systems 
 

 One of the most important concepts to be understood when building prediction models is 
the difference between stationary and non-stationary systems.  As described in Chapters 5 and 8, 
stationary systems may be represented by a curve-fit.  This assumes repetitive behavior, 
something not found in nonlinear nonhomogeneous systems.  This implies the need for models 
that transform nonstationary observable driving forces, using delays and time constants that are 
inherent in systems with inertia, into multi-step predictions.  It also implies the need to model the 
internal nonlinear elements of a system.  This is particularly true when modeling decision 
systems that depend on turning points based on parameter values.  This is virtually intractable 
using naive mathematical approaches. 
 

 Practical problems require model designs based upon detailed knowledge of the physical 
properties of a system.  This requires capturing knowledge about how a system works internally, 
requiring human judgment and detailed expertise.  A significant ingredient of this type of 
modeling effort is understanding the nonlinear elements of the system, and representing these 
elements using rule-based decision models. 
 

 Much of the theoretical discussions presented above have represented general models of 
dynamic systems using systems of equations.  Typically, there are better ways to obtain accurate 
transformations of driving forces, U, into the next system internal state, X, and then into 
prediction of observables, Z.  For example, one can build intelligent models using rule-based 
algorithms that are difficult to achieve with pure mathematics.  In general, a dynamic system can 
be represented by a large model, composed of many submodels, all working together to produce 
the desired transformations.  This approach does not need a constant discrete time-base, but can 
advance in time based upon discrete events, see for example [10], and [13].   An illustration of an 
interconnected set of models is shown in Figure 12-1.  Each model can run independently within 
a time specified frame, sharing data with the others, including feedback paths where appropriate. 
 

 
 

Figure 12-1.  Illustration of a dynamic model. 
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Artificial Intelligence (AI) Models 
 

 It is important to consider and compare the use of Artificial Intelligence (AI) approaches, 
especially since the definition of AI has changed in recent years.  Figure 12-2 illustrates a typical 
representation of the interconnection of synapses in the brain.  Very simply, synapses contain 
memory elements that are interconnected in a manner that allows conduction of pulses to cause 
transmission reactions.  As inputs impinge on animal senses, they are processed by the brain and 
transmitted to other body parts to produce desired physical actions.  These organs and processes 
have evolved over millions of years within animals that have survived.  This process may be 
loosely compared to the logical processing in a digital computer. 
 

 
 

Figure 12-2.  Typical representation of the interconnection of synapses in the brain. 
 
 In the early days, AI was defined as computer decision approaches that followed that of 
the brain.  This involved the development of Neural Nets, using a combination of computer 
hardware and software approaches where the decision processes followed those similar to brain 
synapses.  Many of the applications were described as falling into the general category of pattern 
recognition.  Figure 12-3 illustrates a greatly simplified example of a computerized AI approach 
using neural nets to operate on driving forces, U, to produce a desired outcome, Z.  If patterns in 
the input, U, are recognized over some observation period, then signals are produced indicating 
what patterns occurred. 
 

 
 

Figure 12-3.  Simplified illustration of an Neural Net approach to AI. 
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Artificial Intelligence (AI) - Training Versus Programming Periods 
 

 As indicated above, neural nets can be “trained” to recognize patterns.  This has been 
shown to be a way to identify objects, moving in 3-D, by their shapes.  It can work even when 
object images are fuzzy.  However, similar to human learning processes, the training period is 
typically very long compared to most computer computational algorithms.  This is different from 
the typical use of computers to support computation and decision processes. 
 

 Computers have been used to augment human decision processes since their beginnings 
when they were used to solve difficult computational problems.  In the very early days, before 
digital computers, people using mechanical calculators were known as “computers”.  To solve 
large problems, e.g., solving ballistic equations, rooms were filled with people using calculators.  
Businesses were soon built around electro-mechanical calculators that were programmed by 
wiring boards.  These programmers were effectively doing logical design, accounting for delays 
and race conditions of electronic signals that invoked the decision processes.  The first all-
electronic computer (The ENIAC) was very fast compared to the electro-mechanical devices.  
 

 Before the ENIAC was completed, its designers, John Mauchly and J. Presper Eckert, 
improved the design by bringing instructions into the same memory as data.  Concurrently, John 
Von Neumann, from the Institute for Advanced Studies (IAS) at Princeton University, developed 
the set of instructions for the first stored-program digital computer - the MANIAC - at Princeton, 
NJ.  This computer was extremely fast compared to the ENIAC, allowing the solution of 
problems that heretofore could not be solved.  Today’s computers can solve problems in seconds 
that humans could not solve in years.  Depending on the approach used to produce the programs, 
systems can be developed in relatively short periods of time compared to alternatives. 
 

 When comparing typical computer approaches to AI, except for special applications, one 
faces the time to build and test a program versus the learning period of older AI approaches.  For 
example, cracking codes is a pattern recognition problem, and AI approaches have been applied 
for years.  However, more recent encryption techniques render these approaches hard to apply, 
with the effort required to break codes being limited economically to extremely deep (typically 
government) pockets using huge parallel processing facilities. 
 

   The cases of interest in AI are recognition of nonstationary patterns in large data sets, U, 
that occur in advance of patterns in Z.  These could be predictive, but require a nonlinear 
nonhomogeneous model.  AI type approaches have been applied to the stock market where daily 
data has been recorded for publicly traded stocks for over 70 years.  An enormous database of 
history exists for training neural nets, and one would expect this to be a powerful approach.  
However, its success appears limited to estimation as opposed to prediction, e.g., simply 
determining if a specific measure of buy/sell orders is above or below a threshold.  This has 
worked extremely well in the past, but as more organizations use this technique, the time 
constants to making decisions have gone down to seconds, making speed of solution a major 
factor.  We note again that this is an estimation approach. 
 

 A prediction approach would require predicting changes in market value of particular 
stocks or commodities over a number of days into the future, where prediction accuracy would 
be the determining factor in success.  This is a significant application for prediction.  As a result, 
as clearly specified at The 2016 Economist Conference in Chicago, the term AI was redefined to 
mean “Prediction,” implying the development of algorithmic approaches to solving problems. 
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Expert Intelligence (EI) Models 
 

 There are two basic types of data used in prediction models.  In one type, the input 
driving forces and resulting responses are generally large.  This is the data typically used for 
“learning” in an AI model using the old definition.  It is also used to identify optimal values of 
parameters in prediction models, as well as to test prediction accuracy.  The other type is based 
upon interconnected models derived from knowledge of the internal workings of a system.  For 
example, the knowledge required to build models of financial markets is generally provided by 
subject area experts who have spent many years learning the operational mechanics of a 
particular market.  This knowledge is used to develop complex mathematical models that 
effectively condition the probability statements that quantify predictions.  A simplified depiction 
of a set of interconnected models is illustrated in Figure 12-4.  The difference between this EI 
approach and an AI approach is that the models typically contain complex algorithms derived by 
their designers based on reasonably detailed knowledge of the decision processes, actions and 
reactions that occur within that application. 
 

 
 

Figure 12-4.  Models derived from knowledge of subject area experts. 
 
 
 Experience has shown that, using small amounts of data with no repeating patterns, one 
can build models that provide sufficiently accurate predictions, see [8] and [9].  These are 
developed using expert knowledge of the mechanics of how driving forces affect the system.  
Small amounts of data are sufficient to characterize a small number of model parameters, just as 
is done in the field of physics.  In these cases, the systems can be highly nonlinear.  Using 
nonlinear models, one can provide much more accurate predictions. 
 

 As described in prior chapters and roughly illustrated in Figure 12-1, nonhomogeneous 
nonlinear models can be built and interconnected to predict the behavior of complex systems.  
PSI has used the discrete event simulation environment in VisiSoft, based upon a “generalized” 
state space framework to build such models.  It provides for vector spaces containing discrete 
states that can be described by words as well as numbers.  Transformations can be generic rules, 
not restricted to mathematical operators.  This permits a rule oriented format, e.g.,  
 

 IF this …., THEN do that …., ELSE do something else …. , a format for decision rules. 
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 This format supports direct translation of subject area expert knowledge into model 
process rules.  Since this language is translated directly to machine code, models are built and 
maintained directly in this environment.  Subject area experts can read and write the rules written 
in this language without knowledge of computer programming.   As indicated in earlier chapters, 
the use of subject area experts is considered a major factor in building accurate prediction 
models. 
 
 
EI Models With Optimization 
 

 Another approach to modeling system behavior uses optimization to identify parameters 
in an EI model.  This is illustrated in Figure 12-5.  The optimization process can be applied off-
line, or adaptively in real time.  This is the approach found to be most useful when modeling 
decision processes for which expert knowledge can be introduced. 
 

 Using VisiSoft, expert human knowledge is incorporated into the EI models as shown in 
Figure 12-5.  Unknown parameters are used to account for lack of knowledge.  However, these 
parameters are selected judiciously.  Their placement in the model is determined based upon 
where information is lacking.  Often, one has reasonable knowledge of ranges on these parameter 
values.  Any piece of additional information that can be used in a model to cut down on the size 
of the unknown space, leads to a faster - as well as more accurate - solution. 
 

 
 

Figure 12-5.  Illustration of an optimized EI approach. 
 

 
 First hand experience on many projects clearly demonstrates that experts are aided 
significantly when observing the models as they behave in a simulated environment.  This 
generally leads to significant improvements in representation of the decision process. 
 

 The VisiSoft optimization system referenced here is built into the simulation 
environment.  It uses adaptive algorithms that automatically formulate ensembles of data to 
generate the distributions used to update the search process.  This system has been used to solve 
a wide variety of highly nonlinear problems, such as finding the best location for antennas in a 
very mountainous environment under threat jamming, or finding optimal flight paths for ELINT 
or SIGINT collections, accounting for threat air defense systems. 
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Parametric And Sensitivity Analysis To Support The Modeling Process 
 

 Another means of identifying EI model parameters is by running simulations to support 
parametric analysis.  For example, one can generate distributions of responses by running a 
sufficient number of simulations while varying parameters to determine if model results fall 
inside sensible ranges. 
 
 

EI Models With Adaptive Estimators 
 

 PSI has built EI models with embedded adaptive estimators.  These adaptive estimators 
are used to improve the estimate of the state vector, or specified subsets of the state vector, as 
observations become available.  When an observation comes in, an improved estimate of the 
current state vector is determined, and new predictions are produced. 
 

 Accurate estimates can be achieved using different forms of Kalman or similar filters, 
including nonlinear and adaptive filters.  When adaptive filters are used, parameters in the filter 
are estimated along with the state vector.  Adaptive filter parameters are typically estimated on a 
longer term basis, so that the time-constants of variations between the state estimates and the 
filter parameter estimates are sufficiently separated.  This is illustrated in Figure 12-6 which 
shows an optimized adaptive EI approach. 
 

 
 

Figure 12-6.  Illustration of an optimized - adaptive EI approach. 
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EI Models With Interactive Graphical Visualization 
 

 The use of graphical interfaces are also considered a major factor in understanding what 
is occurring dynamically as models generate results.  Visualization of dynamic behavior is one of 
the best ways to understand system and model behavior, and to use that knowledge to improve 
the models.  Figure 12-7 illustrates multiple subject area experts observing system and model 
behavior as the dynamics unfold.  Equally important is their ability to make changes interactively 
to improve predictions. 
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Figure 12-7.  Subject area experts interacting with prediction models. 
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13. PREDICTION AND CONTROL - A MILITARY EXAMPLE 
 
Problem Overview 
 
 Military operations require highly accurate termination of a weapon’s path at the target to 
avoid collateral damage as well as complete a successful mission.  This requires an accurate 
control system to guide the weapon to the target.  In the relatively simple example used here, the 
target is at a fixed location.  However, the solution approach described can be expanded to the 
case where the target is moving.  This problem is typically initiated by a moving platform, e.g., 
an Unmanned Aerial Vehicle (UAV), performing a hand-off of control to the onboard weapon 
control system, whereby the initial state of the weapon is passed by the initiating platform.  
Current approaches to solving this problem depend upon accurate estimates of the weapon state 
(position, velocity, etc.) at hand-off.  This is because the on-board weapon control system may 
not be turned on until launch, and accurate estimates of the position of the weapon itself may 
take time without an accurate initial estimate from the launch platform.  This problem is typically 
solved by having the control systems on both platforms obtain position data using GPS receivers 
to update estimates of measurements from an Inertial Measurement Unit (IMU). 
 
 Having developed GPS coverage mapping tools using accurate models of the GPS 
constellation, including receiver connectivity in very rough terrain (e.g., Afghanistan), PSI has 
shown that satellite coverage may fall below accuracy requirements at certain times of day, even 
without jamming, see [32].  In situations where coverage is degraded, it is difficult to accurately 
guide weapons to a target when the control systems on both platforms depend upon accurate 
GPS signals.  Various approaches to mitigating this problem have been proposed and developed 
over the past decade.  These include use of distributed relative navigation systems that depend 
upon improved versions of sophisticated radio networks.  However, when dealing with small 
munitions, restrictions on size, weight, and power of on board equipment limit approaches to 
design of the onboard control system.  The best solutions use more computational power and 
memory, see [33]. 
 
 A pertinent example scenario may take place in the mountainous region of Northeast 
Afghanistan where connectivity between platforms is difficult for communications, see 
Figure 13-1.  This environment places stress on connectivity with nearby platforms as well as 
satellites.  In such an environment, the launch platform may have difficulty determining its own 
position with sufficient accuracy before launching a weapon. 
 
 Depending upon the host platform and weapon, power to the weapon may be limited until 
a certain point relative to the launch process.  For example, full power may not be available until 
30 sec after launch.  Assuming compatibility of radios used on the munition with those in range, 
there may be a synchronization/identification delay before reliable reception of position 
messages can occur.  Depending upon the distance to the target and the speed of the munition, 
these delays may be a significant factor affecting the ability to receive enough observations, refer 
to Table 13-1. 
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Figure 13-1.  Example of a scenario of interest. 
 
 
 
 

Table 13-1.  Time of flight as a function of distance and speed. 
 

25(m/sec) 50(m/sec) 100(m/sec) 200(m/sec)

5 200 100 50 25
10 400 200 100 50
25 1000 500 250 125
50 2000 1000 500 250

Error Analysis  09/13/09
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 Figure 13-2 is a simplified example illustrating a weapon launched at T0 from a platform 
that may or may not have sufficient GPS coverage to obtain an accurate position of itself.  If it 
does, and gets that information to the weapon, wind forces may work to drive the weapon 
trajectory off course.  Then sufficiently accurate observable inputs are still needed to guide the 
weapon to the target.  Many systems depend upon GPS inputs to provide an accurate update to 
an IMU that is feeding the control system maintaining the weapon on a desired trajectory.  
However, if sufficient numbers of timely messages are not received from the GPS constellation, 
accuracy may be lost and the weapon may be thrown off course by wind or other atmospheric 
effects.  If this occurs multiple times along the path, getting it back on track may not be feasible. 
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Figure 13-2.  Simplified illustration of weapon trajectories. 
 
 
 Assuming the weapon has an IMU on board, then depending upon the initial conditions 
of that system, it may take time to update it with accurate position information.  If it gets 
accurate GPS fixes up to a point in the flight, then the time constants of accuracy decay may be 
critical depending upon the remaining flight time and additional observable measurements.  As 
indicated above, a solution is to get position information from sources other than GPS as it 
moves along the trajectory.  This implies sufficient accuracy and time to receive this information, 
and this depends upon the on board radios being used to receive the messages.  For example, in 
more advanced radio systems, multiple relayed messages may be sent at the same time to ensure 
reception, but that causes the potential of mutual interference. 
 
 The position, orientation, antenna gain and polarization of transmitting platforms, along 
with the terrain, atmospheric conditions, etc., between platforms, and the position, orientation, 
antenna gain and polarization, and noise environment at the receiver, and the signal processing 
gain are some of the factors that determine the communications connectivity between platforms.  
Connectivity between platforms determines the number of platforms that can be used to provide 
position updates to the weapon.  The waveform used to transmit position messages, and the 
number of messages that must be received from different platforms will determine the time to 
obtain a sufficiently accurate position update, see [34] and [35]. 
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 Characterizing the speed and accuracy of solutions to this obviously complex problem is 
a key part of the design process.  Fair comparison of different approaches is critical to making 
decisions on technology investments.  Sufficiently detailed live testing is hard to control and 
becomes very expensive when analyzing variations to ensure decisions are based upon accurate 
information.  In this type of situation, detailed simulations have been used successfully to 
account for all of the sources of error and variations.  These have provided the best approach to 
support both design and comparison of solutions.  Models may be validated using limited test 
data.  Trade-offs on the design of measurement and communications equipment, (IMUs, radio 
receivers, sensors, etc.) to achieve accuracy within limited size, weight, and cost bounds are 
highly complex.  The critical part of the simulation problem is time and cost to build and run the 
simulations. 
 
 
Approach To Maximizing Accuracy Of The Control System 
 
 The technical approach to designing a sufficiently accurate control system of this nature 
requires software approaches that mitigate the problems defined above while fitting into on-
board computers.  The intent is to provide software solutions to take maximum advantage of 
available hardware to gain the required accuracy as well as meet the constraints on size, weight, 
and cost. 
 
 When looking at existing solutions to this problem, they typically take the form depicted 
in Figure 1-2, but without an explicit prediction system.  This is because control theory is 
generally based upon the exclusive use of estimation.  Prediction models are not used, a serious 
flaw when trying to achieve an accurate guidance system.  The purpose of this book is to use a 
prediction approach to maximize the accuracy of control systems. 
 
 As described above, the guidance problem is to maximize the probability of hitting the 
target.  If the probability statement itself is inaccurate, then the probability of hitting the target is 
decreased.  To maximize the accuracy of the probability statement, one must maximize the 
information used to condition the probability statement.  The difference between estimation and 
prediction is simply the ability to add more information to the conditioning of the probability 
statement.  As stated in prior chapters, additional information implies that which is above any 
additional noise and is orthogonal to what is already there.  This is accomplished using 
prediction models that account for future driving forces, delays, and time constants that cannot 
be accounted for using estimation. 
 
 
Control System Architectures 
 
 As described in the first chapter, control system architectures may be represented as in 
Figure 1-2, where the control sequence is input to the system being controlled.  Such systems 
generally rely upon observable data and knowledge of flight mechanics to obtain accuracy.  As 
observations become available, control sequence outputs are updated.  Prediction accuracy is 
represented by a probability statement conditioned on all information up to current time T.  This 
information is usually obtained from observable data and knowledge of the system mechanics. 
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   However, additional information may be obtained from knowledge of the unobservable 
as well as observable factors affecting the future (T > 0).  We propose to include a prediction 
subsystem to predict these factors to gain accuracy.  We will use wind as an example. 
 

 The framework in Figure 1-2 shows an overall control system composed of generalized 
sets of components for control, estimation and prediction.  Note that control subsystems may in 
turn contain their own estimation and prediction subsystems.  For example, an inertial navigation 
component, e.g., an IMU, may itself contain a control subsystem.  The purpose of this approach 
is to support optimized architectures of control subsystems which may not share observable 
inputs and state vector components with other control subsystems.  This approach supports 
design optimization of both hardware and software components on a relatively independent 
basis, where error state subvectors may be separated for improved estimation as well as 
architecture. 
 

 A critical part of the prediction subsystem is the model of the navigation unit’s response 
to different atmospheric conditions, e.g., wind.  This model must account for dynamic changes in 
forces hitting the munition as it continues along its path.  This requires the ability to differentiate 
between changes in state due to normal movement in an unchanging environment versus those 
due to changes in external forces.  Other sources of atmospheric measures may also be available. 
 

 As illustrated in Figure 13-2 above, factors, e.g., changing wind forces, directly affect the 
path of the weapon.  Given a navigation system component, e.g., an IMU, the atmospheric 
environment will affect both the state estimates from that navigation unit as well as the actual 
weapon path.  We propose to develop models of the environment that use changes in state 
estimates from the navigation unit to predict atmospheric behavior down the flight path, see 
Figure 13-4.  This will produce more accurate predictions of where the munition is headed in the 
future.  The improved accuracy comes from the additional information contained in models of 
future atmospheric effects, see [32]. 
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Figure 13-4.  Illustration of a prediction model to characterize the effect of wind on navigation. 

 
 
 The wind model may be designed with coefficients that are added to the state vector for 
adaptive estimation.  This implies that data collected while in flight may be used to improve the 
prediction of winds further down the path. 
 

 One may also produce control sequences that account for the predicted future changes.  
Instead of making corrections to get back to a trajectory that is predetermined or computed on 
the fly, one can use the predictions to produce control sequences that are optimized for multiple 
steps into the future, see Figure 13-5.  For example, if predictions of future wind forces add 
accuracy, then controls that are produced to account for the wind changes will improve the actual 
trajectory at future states.  This will reduce the difference between the actual and desired state 
and the corresponding control changes required to follow a more accurate trajectory. 
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Figure 13-5.  Obtaining more accurate weapon trajectories. 
 
 
 If we can translate the differences in position, velocity, acceleration and attitude states 
produced by a navigation unit (e.g., an IMU) as the munition goes through changing atmospheric 
conditions, then we can incorporate these characteristics into a model to predict the future state 
of atmospheric forces based upon the changing IMU state estimates.  This depends upon a 
sufficiently accurate model of the IMU responses to munition platform state changes. 
 
 To do this, we must first derive a model of the IMU’s response to physical changes in 
state.  If such a model does not already exist, then this effort will require actual IMU test data.  
Given a model of the IMU responses, we can create a simulation using wind scenarios to 
characterize the state estimates coming from a navigation unit based upon simulated munition 
state changes.  From this we can produce an IMU Wind Effects model. 
 
 Given estimates of the changes in wind, we can derive the characteristics of a wind 
prediction model.  Creating and testing these models implies an architecture illustrated in 
Figure 13-6.  We note that the wind effects model may be incorporated into a final wind 
prediction subsystem with its own estimation subsystem.  This is an architectural design issue 
that is best resolved from a model simplification standpoint. 
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Figure 13-6.  Identification of the prediction model. 
 
 
 The above approach is not limited to an IMU but may incorporate other navigation units.  
Likewise, it is not limited to wind, but can incorporate other atmospheric effects.  Separate 
prediction models may be built, each with their own state estimators to provide adaptive updates 
to model coefficients.  The intent of this approach is to expand the use of software and computer 
memory to maximize accuracy of the trajectory to meet requirements using a minimum 
equipment suite best suited to the weapon. 
 

 Another benefit of using multi-step prediction is shown in Figure 13-7.  A byproduct of 
multi-step prediction is the ability to create an envelope model characterizing future error, e.g., in 
the position state.  This is done by propagating the covariance of the position vector a selected 
number of time steps into the future, and finally to the terminal point on the trajectory, as 
illustrated in Figure 7.  This information is used to update coefficients in the envelope model.   
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Figure 13-7.  Illustration of a prediction envelope near the terminal point on the trajectory. 
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 The percent error that the envelope represents can be predetermined.  This information 
may be used to terminate the weapon when the predicted error exceeds a predefined limit.  The 
envelope model may be developed using a nonlinear optimization system in a simulation.  The 
next section provides background on how this may be accomplished. 
 
 
Computer-Aided Design (CAD) / Optimization 
 

 One can optimize control systems by embedding them in a VisiSoft simulation.  This 
helps to provide a fair comparison of different approaches.  The simulation must contain models 
of all factors affecting the flight of the weapon to produce an accurate assessment of its ability to 
hit the target.  This implies that models have been validated using live test data, and that the 
simulation environment contains a subsystem that allows designers to optimize parameters in the 
control, estimation and prediction subsystems of the overall control system shown in Figure 1-2 
above. 
 
 The VisiSoft CAD architecture shown in Figure 13-8 has been designed so that 
subsystems may be optimized separately as well as jointly.  The optimization facility must 
support the design of nonlinear dynamic systems, nonlinear optimization functions, and realistic 
worst case nonlinear design constraints.  Typically, one wants to compare different designs to 
determine which one meets the constraints while minimizing an error or cost function.  Cost in 
this case may imply adding another sensor or radio to increase the probability of having a 
sufficient number of accurate observable inputs at points along the trajectory. 
 

Refinement Feedback

CAD SIMULATION TOOLS for ANALYSIS &  DESIGN OPTIMIZATION

Design
Optimization

Platforms

MOPs/MOEs

Missions

Databases

Movement
Scenarios

Targets Threats Terrain
Weather

Comms
Caps/
Lims

Algorithm
Parameters

Message
Strings/
Event

Threads

Sensor
Caps/
Lims

Platform
Caps/
Lims

Operations Assessment Tool  05/26/11

Optimization
Simulation

Interactive
Dynamic

Visualization

Design Requirements Design Requirements

 

Planning
Simulation

Scenario
Development

Platforms

MOPs/MOEs

Missions Assessment

Platforms

MOPs/MOEs

Missions

Analysis
Simulation

Interactive
Dynamic

Visualization

AssessmentAssessment

Platforms

MOPs/MOEs

Missions

Refinement Feedback

Databases Databases

 
 

Figure 13-8.  VisiSoft Simulation capability for analysis & optimization. 
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 Figure 13-8 shows three simulations, one for scenario development (the Planning 
Simulation), one for design optimization (the Optimization Simulation) and one for assessment 
(the Analysis Simulation).  The planning simulation is used to support interactive creation and 
modification of scenarios.  The optimization simulation is used to determine optimal design 
parameters, e.g., those used for optimal sensor placement.  The analysis simulation is used to 
perform general analysis, producing various MOEs and MOPs using large dynamic scenarios, 
and to perform parametric, sensitivity, and Monte Carlo analyses.  Some of the features of this 
simulation capability are described below relative to functions to be performed when supporting 
an analysis effort. 
 
 
Controlling A Large Number Of Large Complex Models 
 

 A large number of models and submodels are required to simulate complex scenarios of 
the control system environment as well as the control system itself.  Many of the models are 
complex by their nature.  Use of the VisiSoft CAD environment is required for combining, 
changing and controlling these models quickly for rapid prototyping and testing.  Modeling 
along physical lines using makes the resulting architecture of models independent so it can 
support changes.  Many of these models already exist in libraries from prior projects. 
 
 When dealing with this type of problem, one must examine all contributing component 
factors as sources of error.  These components are selected based upon trade-offs such as cost, 
size, availability within time frame of interest, etc., as well as worst case scenarios to be met.  
Typical components include (not limited to): 
 

• Sensors on launch platform 
 

• Receivers on launch platform (to obtain fixes from other systems) 
 

• Sensors on weapon (IMU, Altimeter, Air Speed, Wind Estimation, Video Sensor, ...) 
 

• Receivers on weapon (to obtain fixes from other systems, e.g., GPS, other radios, ...) 
 
 One must also estimate error budgets for all contributing components so that specific 
error constraints for each unit may be addressed by design.  Typical state errors may include (not 
limited to): 
 

• Position, velocity, attitude and rotation of weapon 
 

• Weapon clock bias, drift 
 

• GPS clock bias & drift 
 

• Electro-Magnetic wave propagation delays 
 

• Accelerometer input misalignment, bias, scale factor error, drift 
 

• Gyro input misalignment, bias, scale factor error, drift 
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Using Realistic Stress Scenarios 
 

 To produce measures of accuracy used for comparison or to assess combining of 
technologies, scenarios must contain all factors that are sources of error.  Scenarios must produce 
measures of mission effectiveness and provide realistic stress conditions that test and compare 
different solution approaches.  To speed the process, multiple vignettes may be run in parallel as 
shown in Figure 13-9.  In addition, parametric analysis is typically required to assess the 
variations that occur and to drive out realistic worst case conditions.  Monte Carlo analysis may 
be performed to determine the variance of distributions of outcomes. 
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Figure 13-9.  Example of a scenario of interest. 
 
 
Measuring Mission Effectiveness 
 

 When making design decisions that require long term investments, they must be backed 
by a reasonable probability of success.  Such probabilities can only be determined using detailed 
simulations that account for all of the factors that may result in system failure.  Determining 
these probabilities is best accomplished by embedding the design in realistic stress scenarios to 
determine the effectiveness of missions depending as a function of different designs. 
 

 Mission effectiveness can only be determined by playing all of the events and messages 
that mark completion of each step along the chain, and tracking the cumulative error and time to 
complete those steps. 
 

 Messages are typically triggered by events (e.g., target sightings or mission management 
decisions), and incoming messages on one platform may trigger outgoing messages to others.  
Messages may trigger events as well as other messages, so one must model all of the events and 
traffic that affects mission outcomes.  Measures of timing and synchronization are natural by-
products of this approach. 
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 In an RF environment, power transmitted in a frequency band is received as noise by all 
parties attempting to receive from a different transmitter in that band.  The noise level created at 
a receiver depends upon many factors (power of the transmitter, distance to the receiver, antenna 
gains, polarization, propagation path loss due to terrain and foliage, etc.).  Therefore, background 
traffic and noise from other sources in the bands of interest must be represented with sufficient 
accuracy to determine the probability of receiving a message. 
 
 Figure 13-10 illustrates one of the problems currently faced by sensor, communication 
and navigation systems in Northeast Afghanistan.  Green lines show Radio Frequency (RF) 
connectivity or Line-Of-Sight (LOS) and red lines show lack of RF connectivity or LOS - often 
due to terrain masking.  Even in this scenario which is small compared to a large theater, 
connectivity may be difficult.  This is an example of a flight viewed interactively from the CAD 
system described above - while the simulation is running. 
 

 
 

Figure 13-10.  Example of RF connectivity or LOS. 
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14. PREDICTION AND CONTROL - A FINANCIAL EXAMPLE 
 

 Figure 14-1 illustrates the changing values of the Euro against the U.S. dollar.  Clearly 
the values can change significantly in a short period of time.  The purpose of the Position Control 
System is to control the movement of positions (in or out of a currency) that a trader can take 
given a limited number of options (e.g., a maximum of 10 currencies) so as to maximize the 
probability of improvement of the position (the Optimal Control problem).  The case of interest 
here is when an action that can be taken to be in or out of a position.  We will use the example of 
the decision to Buy or Sell a given currency.  In general, a position can be in or out of multiple 
currencies at the same time.  We may want to start by restricting our rules of engagement to be in 
multiple currencies only when the probability of future improvement of these currencies is close 
to equal. 
 

 The initial scheme described here will cause actions to be taken when the highest 
probability of improvement requires a move to another currency.  In the case where there is more 
than one option at the highest level, then a position may be taken on multiple currencies. 
 

 We note that the currencies defined here are relative, in the sense that each position must 
be defined relative to a reference currency.  For example, consider that all currency values are 
expressed in terms of the U.S. dollar (i.e., their cost in U.S. dollars).  Thus, if all currencies are in 
the sell position (going down), one must be holding the reference currency, i.e., the U.S. dollar.  
We note that all currencies, including the U.S. dollar, may be going down relative to a position in 
some other market, e.g., gold.  In that case, one must consider expanding the options to include a 
new reference position.  One may view the reference position as being “out of the market” or “on 
the sidelines.”  In this view, if the currency one normally holds is the U.S. dollar, then one would 
satisfy these conditions by using it as the reference position. 
 

 The control system of interest here will make recommendations on buying and selling 
currencies valued in terms of the U.S. dollar.  The decision process within the control system 
will be dependent upon predictions of the values of the currencies of interest over a future time 
horizon, e.g., 12 days.  The accuracy of these predictions must be high enough to produce 
decisions that have an acceptable probability of a sufficient return on investment ROI over the 
course of a year. 
 
 
Investment Considerations 
 

 The ROI must be a sufficient percentage of that investment to warrant running the system 
on a daily basis.  The return must include all expenses, e.g., the cost of obtaining data and the 
cost of trading.  The amount of money put on a position will affect the dollar return, with higher 
amounts producing higher returns, but having the risk of greater loss.  For example, one may 
take positions on margin, but these must be counter-balanced by a low probability of loss.  The 
purpose of the control system is to determine the best position to take based upon model 
predictions and the many factors that affect the investment outcome.  Although this can all be 
automated, the actual decision to keep or change a position will likely be the responsibility of the 
person using the control system. 
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Technical Considerations 
 

 Figure 14-2 illustrates the movement of the predicted price of a currency whose value is 
increasing relative to the U.S. dollar.  Points on the curve represent a predicted price at a 
particular time step into the future.  If the maximum time horizon for prediction is 12 steps 
(TPQ = 12 days), then this could be a chart of predictions for any of the future days (1-12).  But 
this chart does not depict information on accuracy or volatility.  If the predictions were accurate, 
then one would want to buy when the currency is predicted to go up against the dollar, and sell 
when it is predicted to go down.  In addition, one may want to buy that currency which is 
predicted to go up the fastest relative to other rising currencies.  Buying at the lowest point and 
selling at the highest point as shown in Figure 14-2 is an ideal scheme, one not realistically 
achieved in a fair market. 
 

PREDICTED REL PRICE

TIMET1 T2 T3
CONTROL_SYSTEM_2

BUY

SELL

SELL

SELL

SELL

BUY

BUY

 
 

Figure 14-2.  Relative price predictions. 
 
 
 The inherent problem one faces is the accuracy of prediction, implying that there are 
variations in the potential outcomes that are not accounted for.  These variations must be 
estimated and accounted for when making decisions on which currency to buy.  If the predicted 
rate of increase of value is sufficiently high, then one can make buy decisions, but one must 
interpret what is sufficient.  To do this requires that the variations are characterized in terms of 
probabilities and these probabilities must be characterized in terms of confidence levels.  The 
estimated variations must also be applied to each prediction step into the future and by their 
nature, they will increase with each time step into the future.  Multiple time step predictions can 
be characterized in terms of envelopes. 
 

 Figure 14-3 illustrates an envelope prediction where the upper and lower limits of the 
envelope must be defined in terms of the probability of being inside the envelope.  In this 
example, the envelope represents predictions at future time steps beyond the current time step, 
from TS+1 to TS+TPQ.  This implies that one has the latest information on the value of the 
currency at time TS.  Given this information, the control system must compare it to the current 
position to determine if it should issue a buy recommendation. 
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Figure 14-3.  Relative price envelope for TPQ = 12 days. 
 
 
  To grow an investment at the fastest rate, one must be able to move to positions that 
satisfy the following constraints: 
 

 (1)  Make a sufficient increase in value to cover the expenses of trading (the move); 
 

 (2)  Match if not exceed the maximum increase in value relative to other positions. 
 

The critical element in both of these constraints is to obtain a sufficient increase in value within a 
specified time frame of the currency in which a position is taken.  The time frame is important 
because it determines the amount of improvement to be gained as well as the rate at which the 
investment is improving.  For example, if a position can be taken that grows at a higher rate than 
all others, but levels off after a very short period of time, then one may not make enough return 
to cover the cost of trading.  Looking at Figure 14-3, this implies that the probability of a return 
on a new position taken at TS based upon the value derived from the envelope at the turning 
point (TS+TPQ) must exceed the movement cost. 
 

 Looking at this from another perspective, one must compare the increased value obtained 
by making a change in position - after expenses - to that of staying in the current position which 
may not be growing as fast but will incur no additional trading expense. 
 

 Alternatively, the trading expense may be negligible, especially if one is trading very 
large amounts.  In this case, one is likely looking to move to the currency that is predicted to be 
the fastest growing from the current point of observation out to some point in the future where 
another currency is predicted to grow faster.  At that time, one would move to the other currency. 
 

 In addition, the amount of investment placed on a buy position affects the risk of Ruin 
(losing the total amount of money reserved for investments).  Knowing the limited amount of 
total investment money, one must determine the fraction to be placed on a position given the 
probability distribution defining what may be lost on that position.  This is reflected in Figure 
14-4 which represents the distribution of the probability envelope at a given T+TP time in the 
future, where the probability of incurring a loss may be estimated from the distribution. 
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Figure 14-4.  Distribution of potential value outcomes (V). 
 
 
 It is important to note that, in general, the loss value, Vloss, does not coincide with the 
limits defining the prediction envelope which may be selected to imply an 80% probability of 
being within the envelope, with the further implication of a 95% confidence in the limits 
(yielding a 0.76 overall probability).  For example, if the line on the envelope leading to the time 
point of interest is flat, then this would coincide with the probability of Vloss being 0.76 for 
envelopes whose accuracy is defined as stated above.  If that line has a negative slope, then the 
probability of loss will be greater.  Similarly, if it has a positive slope, then the probability of loss 
will be less. 
 
 One must still be concerned about the amount of loss that may be incurred.  This will be 
affected by the volatility of the potential outcome.  We will attribute the volatility to information 
not contained in - or available to - the model.  This may be treated as a random component 
whose bounds - as well as distribution - are unknown due to changes in the environment. 
 
 This may be accounted for to some extent by expanding the envelope when actual values 
fall outside.  The amount of expansion can be a function of the distance from the point to the 
envelope, and can cause the envelope to expand rapidly to help ensure that the 80% level 
characterizes the volatility.  Likewise, when there are no points outside the envelope for some 
predetermined period of time, the envelope width may be contracted to the 80% level, typically 
at a smaller rate than that used to expand it.  These expansions and contractions provide some 
measure of volatility.  However, it must be noted that they occur after the fact (unexpected 
movement) without prior information. 
 
 Volatility can be modeled to some extent, but requires human judgment regarding 
changes in the market environment not accounted for in the models.  Some of these effects may 
be incorporated after the fact, improving the ability of the model to deal with similar movements 
in the future.  The more information known in advance of such changes that can be placed in the 
model, the more precautions that may be taken by the position control system. 
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Buy / Sell Price Spread Model 
 
 Based upon the envelope predictions, and the spread between the buy price and sell price 
(cost of trading), a decision must be made as to whether it pays to change a position or stay with 
the current position.  The envelope must be predicted to change sufficiently in a positive 
direction relative to the U.S. dollar to ensure that a trade will be profitable.  Thus, predicted 
changes in the envelope must be larger than the cost of trading (it can also be changing with the 
volatility of the currency).  The relationship between the envelope and the trading spread must be 
determined so that sufficiently accurate predictions of the future spreads can be produced by this 
model.  The accuracy of the prediction system coupled with the accuracy of factors accounted for 
in the position control system will determine the profit of trading opportunities.  As accuracy is 
improved, more profitable trading decisions can be made for the same relative risk. 
 
 
Trading Policies 
 
 There are two ways to profit from a currency.  Trades can be made by buying a currency 
and holding it until it rises sufficiently against the dollar, or by taking a short position until the 
currency falls sufficiently against the dollar.  If ten currencies are traded against the U.S. dollar, 
then there are twenty possible positions that can be taken against the U.S. dollar.  Positions can 
be moved directly as predictions change and different currencies switch relative to being the 
most desirable one in which to take a position. 
 
 It may be desirable to take a position in more than one currency at a time, provided a 
sufficient profit is predicted for each currency.  Volume of trades can be weighted in accordance 
with the probabilities that each currency has for being profitable. 
 
 One can also hedge a trading position by buying an option to limit the exposure to a large 
loss.  This involves evaluating the tradeoffs between probable profits, likelihood of a large loss, 
and cost of the option. 
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15 ACCURATELY PREDICTING U. S. CORONAVIRUS - DAILY 
 
 
UNDERSTANDING THE PROBLEM 
 

 Unlike many of the other problems addressed here, the CORONAVIRUS (COVID-19) is 
a medical outbreak that came upon many countries on earth unexpectedly.  Its rapid expansion 
caused heavy demands for facilities (hospitals, beds), equipment (ventilators, masks, etc.) and 
people.  This required layered support from many different organizations across the globe.  To 
suppress the spread, political organizations laid down restrictions on individuals within their 
purview.  These restrictions included elimination of travel, group meetings, and confinement to 
their homes.  This was met with major problems since it could not be applied to many people 
who had to support the medical environment and supply chains for food and other essential day-
to-day living requirements such as toilet paper and cleaning supplies. 
 

 Having imposed heavy restrictions on the population in general, except those in the 
special medical and supply chain needs, politicians such as mayors, governors, the U.S. president 
and his special CORONAVIRUS team were soon pressed to relieve restrictions where they were 
not clearly needed.  Because of the apparent differences in effects in different geographical areas, 
this reduction of restrictions soon became a careful political issue.  In areas that had problems 
that appeared to be contracting, how does one know when to reduce or remove the restrictions 
without causing the problem to expand again.  
 

 This quickly led to models producing curves describing the rising and falling trend of the 
future spread.  But these models were basically curves indicating the rise and fall of the spread.  
As data became available to check out these models (curves), it became apparent that they were 
way off the actual test data.  Although one can now argue that many more people had it but did 
not know it, the original objective was to predict the need for hospital facilities, equipment and 
people to support the huge number of people that would need help.  
 

 As people became stressed by confinement to their homes, the small number of cases in 
many areas and leveling of cases in others caused significant calls for reduction in the 
restrictions.  This was followed by a plan at the federal level for states to relax constraints on a 
planned basis.  The U.S. President stated that the state governors would make the decisions on 
the relaxation of the constraints.  Mayors have looked to people at the county level to help in 
such a decision.  The possibility that a large number of people could have the virus with little or 
no symptoms, and could pass it on has become a major concern.  
 

 The bottom line: How does one predict where the virus is headed.  Or, more importantly, 
if decisions are made to relax the restrictions, how will those decisions affect future outcomes.  
As described below, this is not a simple problem.  There are many factors, including the delay 
between contraction and recognition, assuming the effects are recognizable.  To produce accurate 
predictions requires a complex model that represents all of the contributing factors.  The 
approach to this model is described below.  It starts with an understanding of how these factors 
show up in the existing data.  It quickly becomes clear that just as the restrictions must be levied 
based on outcomes in specific areas, the model must represent these specific areas.  
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OVERVIEW 
 

 Based on the data for seven sample dates in Monmouth and Ocean Counties in New 
Jersey, one can see the huge differences in the percentage of cases based on the differences in 
numbers and types of populations in the municipalities.  (See data on the next two pages).  This 
data is available and necessary on a daily basis.  These daily differences reflect the well-defined 
factors, e.g., behavior - on the spreading of the CORONAVIRUS.  These differences become 
smoothed when one combines this data into total county data - or even worse, state level data.  
Even though large differences exist between counties and states, the relative weights on causes 
of the differences do not stand out – and cannot be identified - except at the municipal level. 
 

 This leads to the obvious conclusion that the causal factors must be weighted at the 
municipal level to produce accurate predictions of future spreading or decline.  In addition, when 
performing predictions at the municipal level, one must understand the amount of work to be 
done before one can determine if that work is best done at the state or county level.  The relative 
quantity of work is obvious from the chart in Figure 1 below. 
 

DATA ON THE UNITED STATES QUANTITY 

NUMBER OF STATES 50 

TOTAL NUMBER OF COUNTIES 3141 + D.C  = 3142 

TOTAL NUMBER OF MUNICIPALITIES 19,522 

NUMBER OF COUNTIES IN NJ 21 

NUMBER OF MUNICIPALITIES IN NJ 565 
NUMBER OF MUNICIPALITIES IN 
MONMOUTH COUNTY 54 

NUMBER OF MUNICIPALITIES IN OCEAN 
COUNTY 

33 

NUMBER OF MUNICIPALITIES IN 
BURLINGTON COUNTY 

40 
 

 

Figure 1.  An extremely rough look at possible situations. 
 
 If one had to do all of the municipalities at the state level of New Jersey, one would 
require processing the data for 565 municipalities every day.  This becomes apparent when 
looking at a sampling of the data in Figures 2 and 3 below.  Doing the daily predictions may 
require reassessing weights on the factors described in the sections below.  As described in this 
chapter, producing predictions for all of the municipalities at the county level requires a 
reasonable effort.  One must consider potential changes in weights applied to each of the factors 
that affect the changes in number of cases within a municipality.  An example is people changing 
their behavior.  This requires a sufficient understanding of the model, and how to perform steps 
to optimizing the coefficients on these factors to produce accurate predictions.  This effort can be 
done by a person with some mathematical background at the county level.  Accurate county data 
is determined simply by adding the municipal data.  States can then combine the accurate county 
level data. 
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Municipality - Monmouth Population 03/?/20  04/10/20  04/11/20  04/15/20  04/16/20  04/17/20   04/18/20 Fraction %
1 Aberdeen 18,372 10 104 105 115 121 123 127 0.00691
2 Allenhurst 489 0 2 2 2 2 2 2 0.00409
3 Allentown * 1,811 0 2 2 3 3 3 4 0.00221 0.22% 
4 Asbury Park 15,511 6 62 68 79 79 87 91 0.00587
5 Atlantic Highlands 4,316 2 14 13 14 16 17 17 0.00394
6 Avon By The Sea 1,780 0 10 10 8 9 9 9 0.00506
7 Belmar 5,587 2 6 8 8 8 8 10 0.00179
8 Bradley Beach 4,174 2 15 14 17 17 19 19 0.00455
9 Brielle 4,691 4 19 20 20 22 22 22 0.00469

10 Colts Neck 10,018 8 46 47 49 50 50 51 0.00509
11 Deal * 723 0 21 22 22 23 23 23 0.03181 3.2%
12 Eatontown 12,242 13 100 103 124 126 132 134 0.01095
13 Englishtown 1,925 5 12 13 15 16 16 16 0.00831
14 Fair Haven 5,820 10 15 15 17 17 17 18 0.00309
15 Farmingdale 1,321 1 9 9 9 10 10 9 0.00681
16 Freehold * 11,767 1 93 106 127 135 140 144 0.01224 1.2%
17 Freehold Township 35,429 28 288 304 344 357 365 388 0.01095
18 Hazlet 20,082 17 138 139 159 161 164 168 0.00837
19 Highlands 4,769 0 12 12 18 19 19 19 0.00398
20 Holmdel 16,648 8 112 115 139 147 147 147 0.00883
21 Howell 52,076 14 316 332 366 386 395 397 0.00762
22 Interlaken 821 0 11 11 1 1 1 1 0.00122
23 Keansburg 9,719 2 60 62 64 70 72 77 0.00792
24 Keyport 7,053 1 39 39 50 53 53 55 0.00780
25 Lake Como 1,694 1 10 11 12 12 13 11 0.00649
26 Little Silver 5,813 12 24 24 25 26 26 24 0.00413
27 Loch Arbour 183 0 1 1 1 1 1 1 0.00546
28 Long Branch 30,406 7 184 196 229 236 248 251 0.00825
29 Manalapan 40,096 27 274 282 312 320 320 321 0.00801
30 Manasquan 5,846 3 20 20 22 23 25 23 0.00393
31 Marlboro 40,466 29 267 271 294 303 309 310 0.00766
32 Matawan * 8,736 3 85 90 106 112 114 115 0.01316 1.3%
33 Middletown 65,952 22 284 296 330 336 348 362 0.00549
34 Millstone 10,522 3 41 42 47 51 53 52 0.00494
35 Monmouth Beach 3,288 2 14 14 14 14 16 16 0.00487
36 Neptune 27,728 12 188 197 213 223 227 230 0.00829
37 Neptune City 4,645 1 20 21 22 23 25 24 0.00517
38 Ocean Grove 3,342 1 5 5 0.00000
39 Ocean Township 27,006 7 153 157 170 178 181 183 0.00678
40 Oceanport 5,751 4 40 40 39 39 39 40 0.00696
41 Red Bank 12,048 2 64 72 83 85 87 94 0.00780
42 Roosevelt 854 0 3 2 2 2 2 2 0.00234
43 Rumson 6,776 5 23 23 24 24 24 25 0.00369
44 Sea Bright 1,364 0 8 7 7 7 7 7 0.00513
45 Sea Girt 1,771 3 9 9 9 9 9 9 0.00508 0.50%
46 Shrewsbury Boro 4,085 1 21 21 24 24 25 24 0.00588
47 Shrewsbury Township 1,117 2 4 5 6 7 7 7 0.00627
48 Spring Lake 2,925 0 6 6 6 6 8 8 0.00274 0.27%
49 Spring Lake Heights 4,555 0 13 14 15 15 15 15 0.00329
50 Tinton Falls 17,563 6 61 62 76 82 89 95 0.00541
51 Union Beach 5,562 0 18 18 28 29 30 30 0.00539
52 Upper Freehold: 6,975 5 26 26 26 28 29 29 0.00416
53 Wall 26,020 4 110 118 141 151 160 159 0.00611
54 West Long Branch: 7,909 4 40 40 46 48 49 50 0.00632

TOTALS 628,142 300 3,522 3,661 4,099 4,262 4,380 4,465 0.0071 0.68%

CASES

 
 

Figure 2.  An extremely rough look at possible situations. 
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Municipality - Ocean Population 03/?/20  04/10/20 4/11/2020 4/15/2020 4/16/2020 4/17/2020 4/18/2020 Fraction %
1 Barnegat 23,167 6 97 103 126 134 138 138 0.00596
2 Barnegat Light 588 1 2 2 2 2 2 2 0.00340
3 Bay Head 977 1 3 3 5 5 6 6 0.00614
4 Beach Haven 1,191 0 5 5 5 5 5 5 0.00420
5 Beachwood 11,270 0 49 50 58 59 61 63 0.00559
6 Berkeley  41,676 6 243 249 289 323 333 342 0.00821
7 Brick 75,188 14 395 420 489 534 566 583 0.00775
8 Eagleswood 1,605 0 0 0 3 3 4 4 0.00249 0.25 %
9 Harvey Cedars 342 0 0 0 0 0 0 0 0.00000

10 Island Heights 1,667 0 3 3 4 5 7 7 0.00420
11 Jackson 56,501 23 288 299 350 362 367 369 0.00653
12 Lacey 28,444 4 90 93 109 113 116 117 0.00411
13 Lakehurst 2,697 0 9 9 13 13 15 16 0.00593
14 Lakewood * 102,682 84 980 1040 1143 1214 1263 1278 0.01245  1.2 %
15 Lavallette 1,849 0 8 8 7 7 7 7 0.00379
16 Little Egg Harbor 20,695 2 39 41 54 64 67 70 0.00338
17 Long Beach Township 3,040 2 11 12 14 15 15 15 0.00493
18 Manchester  43,418 6 189 196 245 264 276 286 0.00659
19 Mantoloking 257 0 0 0 0 0 0 0 0.00000
20 Ocean Gate 2,021 1 3 3 6 6 7 7 0.00346
21 Pine Beach 2168 0 3 4 5 6 9 9 0.00415
22 Plumsted 8,543 2 19 20 28 30 31 33 0.00386
24 Point Pleasant 18,651 11 76 78 85 88 92 93 0.00499
23 Point Pleasant Beach 4,544 1 18 20 22 24 26 27 0.00594
25 Seaside Heights 2,903 0 17 17 19 19 19 19 0.00654
26 Seaside Park 1,549 1 3 3 3 3 3 3 0.00194
27 Ship Bottom 1,143 1 5 5 5 6 6 6 0.00525
28 South Toms River * 3,772 0 34 35 45 47 49 39 0.01034  1.3 %
29 Surf City 1,187 1 3 4 4 4 4 4 0.00337
30 Stafford 27,012 4 84 95 125 131 132 132 0.00489
31 Toms River 91,415 28 541 556 678 739 776 790 0.00864
32 Tuckerton 3,372 0 4 4 6 6 6 6 0.00178 *
33 Waretown 9,049 0 17 18 23 23 23 25 0.00276

TOTALS 594,583 199 3,238 3,395 3,970 4,254 4,431 4,501 0.0076  0.75%

CASES

 
 

Figure 3.  An extremely rough look at possible situations. 
 

 
Looking At Actual Data 
 

 Figure 4 below is a plot of three municipalities (Aberdeen, Freehold and Neptune) in 
Monmouth County, NJ containing 54 daily data points for each starting at 03/30/20 and ending 
at 05/21/20.  This implies the ability to test the 5 to 10 day prediction accuracy for each of 20 
day start times.  Note that the values for cases are summations to date implying actual testing 
requires taking the difference.  We also note that the County of Monmouth has indicated that 
inaccuracies were detected after assignments were made during the periods 04/19 to 04/22 and 
05/03 to 05/04.  These are easily adjusted to be representative of the correct values.  
 

 Upon scanning the ratio of cases / population in Monmouth County municipalities in 
Figure 2, one notes a factor of 10 difference in some of these ratios at different times 
independent of populations.  The latest minimum ratio is 0.387% while the maximum is 3.5%.  
Most of the differences in ratios appear to be caused by behavioral differences.  It is also clear 
that many of the municipalities are still rising rapidly, while some have leveled off. 
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Figure 4.  Plots of daily tested cases for three municipalities in Monmouth county, NJ. 
 
 PSI has obtained sufficient data to test and prove the accuracy of its municipal model, 
and expects to be able to offer a copy of the PSI model to all counties in the U.S. to run it daily 
for each of their municipalities.  This will require training to use the optimization facilities 
described in Chapter 9 to track and optimize the changing factors affecting each municipality. 
 
EXPANDING TECHNOLOGY  
 

 One must start by understanding basic principles of science – principles that many take 
for granted.  Organizations depending on some technologies - e.g., those building electronic 
chips, phones, satellites, and medical solutions - must improve their technology to remain 
competitive and help society.  To do this, scientists must seek the truth based on underlying 
physics, chemistry, biology and mathematics.  As stated by Lord Kelvin and quoted by Anselmo 
and Ledgard, [36], “When you can measure what you are speaking about, … you know 
something about it; but when you cannot measure it, … your knowledge is of a meager and 
unsatisfactory kind …”  This implies developing solid measures of both the positive effects and 
shortcomings of a new approach. 
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 In some technologies, it is difficult to get people to define - let alone take - the required 
measures.  In others, measures are taken on a regular basis.  In the latter case, use of the 
technologies are likely to expand rapidly.  This implies ease of understanding of measures and 
tests that demonstrate results.  As shown below, this becomes obvious with prediction models. 
 
IMPORTANCE OF FACTORS AFFECTING THE CORONAVIRUS SPREAD 
 

 Major factors affecting accurate predictions of the virus spread are described below.  
Upon reading these descriptions, one can observe the importance of using measures at the 
municipal level.  This is because huge differences in outcomes are the obvious result of 
differences in the properties and behavior between adjacent municipalities.  These differences 
are essential to determine weights on the corresponding model factors that produce accurate 
predictions. 
 
Contractions And Deaths At The Municipal Level (By County By State) 
 

 This data is recorded on a daily basis and contains the number of people who have 
contracted the virus and who have died in a given municipality in a given county and state. 
 

 The importance of comparing daily municipal level data is shown by Lakewood - a 
municipality in Ocean County, NJ which had 84 cases of the virus in a population of 102,682.  
On that day, Manchester - also in Ocean County - had 6 cases of the virus with a population of 
43,418.  Manchester is located just below Lakewood, in a very similar environment. 
 

 Similarly, in Monmouth County, NJ, the Freehold municipality had 1 case out of a 
population of 11,767, while on the same day Little Silver municipality had 12 cases with a 
population of 5,813.  Clearly there is at least one significant factor affecting the above 
differences.  This shows the need to use municipal level data to weight the importance of factors 
that cause the differences. 
 

 Accuracy of municipal level predictions directly affects that of a county and state.  Using 
these differences, one can weight the importance of causal factors affecting the probability of 
spread of the disease much more accurately, and therefore the ability to improve actions to be 
taken to avoid contraction, as well as improve accuracy of prediction. 
 
Weather For The Municipality 
 

 It’s been determined that sun affects the spread of corona particles that decreases in the 
summer.  Wind and rain may also affect the spreading of particles.  These factors must be tested 
to understand their importance as it affects prediction accuracy at the municipal/county level. 
 
Collaborative Functions At The Municipal Or County Level 
 

 Collaborative functions attracting 10 or more people are conducive to spreading the virus, 
especially if numbers are large and tightly grouped.  Collaborative functions that are held at the 
municipal or county level must be noted.  It is especially important to develop factors of impact 
based on past events (e.g., the problem with Lakewood) and their effects.  Religious, sports, and 
school gatherings (even shopping) have been cited as major contributing causes.  These factors 
must be quantified to improve measures to avoid contraction and improve prediction accuracy. 
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Living And Working Quarters At The Municipal Level 
 

 One must characterize the housing environment and the percent population it represents, 
e.g.,  percent of people in small condominiums or row houses versus single houses on large land 
parcels.  One must also consider equivalent conditions in which people work.  This can be used 
to determine the average distance and forced interaction between people and the limited 
surroundings they share.  If daily travel conditions can be estimated based on a municipality, this 
may provide an additional factor. 
 
Age and Gender At The Municipal Level 
 

 Age and gender are significant factors that affect the probability of contraction and death.  
It is apparent that younger people tend to get the virus to a smaller level that leads them to ignore 
the minor symptoms.  They do not report having the virus.  Random testing has shown that the 
number of people not reporting is a major percentage of populations that have a significant level 
of people under 30.  This leads to the major difference in Figures 5 and 6 that show much higher 
actual numbers versus early test numbers.  Men also have a higher percentage of cases than 
women. Averages for age groups and gender in a municipality improve prediction accuracy. 
 
Personal Habits At The Municipal Level 
 

 This includes keeping a distance from others when near people who could be carriers or 
have been close to carriers.  These include people one knows and relatives - who may not know 
they have it.  As indicated above, people can contract it but not be aware of it.  It takes about two 
to three weeks for the virus to take effect. Even after this period, some people are immune and do 
not notice the effects.  It also includes where people go if they leave their living quarters, e.g., 
shopping.  It also includes habits, e.g., wearing masks or scarves, cleanliness, e.g., washing their 
hands, etc.  Finally, personal habits determine whether people attend collaborative functions, a 
major factor in some municipalities.  All of these factors can change as people learn about the 
results of certain habits over time.  The effects of personal habits must be monitored to affect 
changes in the model as a function of time. 
 
The Effects Of Time Constants 
 

 There are also time constants associated with factors.  Most important is the 2 to 3 week 
period between contraction and observation.  Such delays must be accounted for in the model. 
 
A ROUGH LOOK AT POSSIBLE SITUATIONS 
 

 Figures 5 and 6 below are not based on actual data.  They are only drawn to provide what 
is indicative of the problem with many models.  The blue curve represents data based on testing 
(only 9 points are marked).  It is not intended to reflect actual data.  The red curve - ACTUAL 
data - represents an example of the actual cases - to differentiate it from TEST data. 
 

 The critical observation is that the number of people representing the actual data has been 
well above the test data, and certainly at the beginning of testing.  Only after people 
demonstrated significant differences in levels of effects (some did not know they had it) did 
anyone recognize the substantial difference.  As the number of people affected rose rapidly, the 
level of concern started to rise exponentially, and so did the amount of testing. 
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Figure 5.  An extremely rough look at possible situations. 

 

 
Figure 6.  Another rough look at possible situations. 

 
 Even though tests are biased, limited to those having real symptoms, it is clear that the 
actual number of cases is well above those reported by tests.  Without sufficient random testing, 
it is hard to estimate the actual number.  But, limited test facilities have prohibited early random 
testing.  Furthermore, people that had only minor effects were back to normal in relatively short 
time frames.  Although these people do not test positive, they are identified by their immunity. 
 

 Since the Second World War, global travel has increased dramatically, and travel causes 
a virus to spread from country to country.  Depending on the size of a country having an early 
introduction of the virus, and the nature of the introductions within that country, the test curve 
may take a dip as illustrated in Figure 6.  Clearly travel between countries, and then between 
states, counties and municipalities within them represents important factors in determining the 
spread of the virus.  One must be aware of such situations when determining when and where 
travel affects the spread. 
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 As indicated in Figure 6, even though there is the start of a decline, this can be turned 
around depending upon many factors including testing and corresponding restrictions.  This is 
also affected by people who have it and don’t realize it, but still produce particles that spread it. 
 

 Most important is the complex nature of the spread and the corresponding approach to 
testing.  A person with mild symptoms may not know they have it and pass it on to others who 
may or may not become highly affected.  If those tested only represent a small part of the 
population (those reporting it), particularly with respect to those who did not know they had it, 
then the tests will not represent the actual cases and potential for expansion. 
 

 In areas with many younger people, testing is limited because younger people have 
limited effects and don’t realize they have it.  These young people can spread it, causing further 
outbreaks.  When testing is limited to small samples, e.g., those with apparent symptoms, one 
can draw incorrect conclusions about important factors. 
 

 Additional factors are necessary to characterize the state of a county or country.  These 
are the levels and time constants associated with spreading among different types and ages of 
people.  Those living in tight quarters (major cities) will be most affected.  When trying to 
determine the state of a given community, county or country, all the above considerations must 
be taken into account.  This presents the need to quantify the factors affecting the spread, 
including their relative time constants based on age and gender, and their surrounding living 
conditions. 
 
Achieving Prediction Accuracy 
 

 We note that, based on existing municipal data, the above factors can vary considerably 
from municipality to municipality.  To use these factors in a model, one must express them in 
terms of mathematical functions that represent the dynamics of the physical systems.  Then, by 
optimizing coefficient multipliers on these functions to match the actual data - at the municipal 
level - one can predict the future values of a county much more accurately.  This translates to a 
much more accurate prediction of the outcomes of a state. 
 

 A mock example of the number of cases of COVID-19 in a single municipality is 
illustrated in Figure 7 for January through April.  Figure 8 illustrates PSI’s prediction approach 
using an 80% envelope encasing predicted results up to 19 days in advance.  This implies that the 
actual outcomes will be inside the predicted envelope 80% of the time. 
 
Changes To The Factors 
 

 Although there are at least five factors now, this may change with an improved 
understanding of the causal factors.  The existing factors may also change based on the physics 
of the municipality, and be updated by rerunning the optimization system over the most recent 
data set for that municipality.  These updates should not be hard to implement at each county.  
This requires training on the use of the VisiSoft optimization system. 
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Figure 7.  A Mock example of a particular municipality in some county in some state. 
 

 
 

Figure 8.  A Mock example of PSI’s prediction model using an envelope of predicted outcomes. 
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 Plotting The Results 
 

 Figures 7 and 8 represent plots of data and resulting predictions.  Figure 7 is a mock 
representation of a possible output plot of cases by day over the months of January through 
April.  Figure 8 is a mock representation of a plot that includes the envelope predictions for a 19 
day period in April.  The theory behind the predictions is explained in the section below. 
 
MATHEMATICAL MODELS 
 

 The subset of equations below represents an approach to estimating the actual number of 
people with the CORONAVIRUS by determining an approximation to the difference between 
the test data and the actual values.  The estimation function must be determined using a random 
sampling of tests of the entire population.  This sampling may be small compared to the test on 
those believed to have the virus.  These random sample tests may be done on a few selected 
municipalities to provide data for optimizing the parameters.  It may be possible to do (almost) 
complete testing of very small communities to verify the approximations.  The New Jersey 
counties/municipalities with whom we are familiar produce this data on a daily basis. 
 
Mathematical Model Entities 
 

 Having produced an initial set of functions, they can be used to estimate the functional 
difference between municipalities.  These can be used to determine the need for an approach to 
additional random testing to characterize remaining municipalities.  The following definitions 
provide an overview of the approach.  Note: Time(56) = Day 56.  End of time ==> end of day 
 

Time(T + 1)  =  Time(T + ΔT)   where ΔT = 1 day 
 

NP(T)  =  Total population of the area of interest at time T 
 

NA(T)  =  Number of actual cases at time T - This is being predicted but is not tested 
 

ND(T)  =  Number of cases of death during time T - Available data 
 

NR(T)  =  Number of total recoveries during time T - Must be estimated 
 

NT(T)  =  Number of cases tested positive during time T (excludes deaths and recoveries) 
 

NΔ(T)  =  NA(T) − NT(T)  =  Difference between total cases and tested cases at time T 
 

NC(T)  =  Number of people unaffected (prone to infection) to date at time T 
                         =  NP(T) - NA(T)  - ΣND(T) - ΣNR(T) 
 

 Note that, if the above data is not available daily, then the equations below must be 
modified to suit the availability. 
 

Estimation Of Unmeasured Values (To Date) 
 

 Unmeasured values needed to do computations must be determined through estimation.  
This can be done by optimizing coefficient multipliers on known or estimated quantities as 
described below.  These coefficients are generally considered to be constant, but may vary with 
time as well as municipality, and may have to be optimized for different time periods.  Ideally, as 
more measurements are taken using random samples, estimates of these values will be known. 
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COEFFICIENTS   *** Multipliers on the following attributes 
 

NA - Number of ACTUAL_CASES              =  Coeff * TEST_CASES 
 

    1  C_ACT_CASES                 REAL INITIAL_VALUE 5 
 

NR - Number of RECOVERIES                    =  Coeff * ACTUAL_CASES 
 

    1  C_RECOVERIES                REAL INITIAL_VALUE 0.2 
 

NT - Number of TESTED_CASES               =  Coeff * ACTUAL_CASES 
 

    1  C_TESTED_CASES              REAL INITIAL_VALUE 0.2 
 

ΔNA - Number of ACTUAL_INCREASES  =  Coeff * UNAFFECTED  (population – affected) 
 

    1  C_ACT_INCREASE              REAL INITIAL_VALUE 0.2 
 

ND - Number of DEATHS                            =  Coeff * ACTUAL_CASES 
 

    1  C_DEATHS                    REAL INITIAL_VALUE 0.01 
 
Model Equations 
 

 To predict what will happen on a daily basis, one must estimate how the changes occur.  
To start, one must predict the actual cases at time T+1: 
 

NA(T+1)  =  NA(T) + ΔNA(T)  =  Total cases at time T+1 
 

 By definition:   ΔNA(T)  =  New cases during time interval [T, T+1].  These cases are not 
known to the persons at the time of infection, but will appear to a portion of them (≈ 20% - 
depending on the municipality) after 2 to 14 days.  At that time, those that recognize they have it 
will likely be tested.  To predict the actual cases for the next day: 
 

NA(T+1)  ≈  NA(T)  +  FΔ (T) 
 

Where FΔ (T) is computed using functions affecting the daily change, 
 

FΔ (T) =  NC(T) * [C1*NA(T)  +  C2*WH(T)  +  C3*GA(T) 
                                                     +  C4*LQ(T)  +  C5*CF(T)  +  C6*PH(T)] 

 

Where  NC(T), is those unaffected to date, and 
 

WH(T)  is a function of Weather (sunlight, temperature, wind, moisture); 
 

GA(T)  is a function of Gender and Age  (Must split each gender into 3 age groups); 
 

LQ(T)  is a function of Living Environment (May be split; 
 

CF(T)  is a function of attendance at Collaborative Functions (Must identify functions); 
 

PH(T)  is a function of Personal Habits. 
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Then, 
NT(T+1)  =  CA*NA(T+1) 

 

where NT(T) is the number of existing cases during time T that were tested positive, and  FΔ(T) 
is a function of factors used to approximate NΔ(T)  based on NC(T), those unaffected to date. 
 

 Note that the number of test cases is used since that is a measured number and should add 
accuracy by reducing the number being estimated.  However, this should represent a measure 
that is independent of the number of tests performed on the population.  Instead, there is a ratio 
of number of tests to the population, or that part of the population that is not immune if these can 
be tested again. 
 

 Some of these factors may be a function of the day of the week.  Some must be expanded 
into multiple factors and coefficients.  For example, weather is a function of temperature, wind 
and moisture.  Gender and average age must be split. 
 

 Elements within the functions and the coefficients (Cs) can be determined using the 
VisiSoft Optimization system for each municipality.  One starts by developing generic values for 
the specific functions based on multiple municipalities, i.e., by county.  Given those for the 
county, one can optimize the individual C coefficients for each municipality. 
 
Achieving Accurate Predictions 
 

 Prediction is presented in terms of an envelope described by the circles from day 1 to 19 
in April in Figure 8.  Because of the increasing probability of error, these envelopes expand with 
future time.  Envelopes are defined in terms of the probability of being inside.  PSI typically uses 
an 80% envelope, implying that the probability of being inside an envelope is 80%. 
 

 The probability statement must be backed by a Confidence Level.  PSI uses a 95% 
Confidence Level, i.e., the probability of being inside the envelopes 80% of the time is 95%.  The 
Confidence Level must be derived from many prior predictions over time.  When producing 
daily prediction envelopes, checking them over the course of a year is generally more than 
sufficient.  And there is good reason for using a shorter period to ensure that more recent 
probabilities are still good.  Checking them over a 100 day period provides 100 separate 
confidence tests, a reasonable number.  To achieve a 95% confidence in the envelopes, one must 
meet the 80% criteria 95 days out of the last 100 for each prediction step. 
 
Modeling Distributed Responses To Events 
 

 When modeling populations of elements of nature, one must face the fact that all 
elements or individuals do not produce the same response to an event, and if they do, it is not 
produced at the same time.  Instead, responses are typically characterized by distributions in time 
and state space.  For example, When people are first infested with the COVID-19, it typically 
takes from 1 to 2 weeks for them to become aware of it.  However, if tested during that period, it 
will show positive.  Once aware that they have it and are tested, their response to this well 
defined event produces a distribution of follow-on events that can be quite varied in their actions 
as well as their times of occurrance. 
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 It is this delayed behavior that produces inherent “unpredictability” in a system.  
However, using the approach described below, one can model these types of distributed 
responses directly as they affect the behavior of a population, obtaining substantially improved 
accuracy.  Such models are created relatively easily using VisiSoft. 
 

 We start with a general example of distributed responses to a sequence of events to show 
how the resulting delayed cumulative response can be modeled quite easily with reasonable 
accuracy.  This is useful in predicting responses to events that occurred many time steps in the 
past.  To demonstrate this, we illustrate a simple model of CORONA-19 as a function of the 
initial event of infections. 
 
Modeling Inertial Subsystems 
 

 To demonstrate the significance of incorporating "leading factor" driving forces into a 
model, we offer an example which is representative of many actual cases.  Let U(T) be the 
driving force (Figure 9), and let Z(T) be the output response of the system, (Figure 10).  In this 
example, both are observable at discrete time points T.  Figure 10 represents an example of two 
exponential response functions as used in engineering.  TD1 and TD2 are delay times measured 
from the input impulses U1 and U2.  TD1 is the time before the first exponential starts to rise 
(positive).  TD2 is the time before the second exponential starts to rise.  TAU1 and TAU2 are the 
rise and fall time constants for these exponentials.  These same delay times and exponentials are 
applied to all succeeding inputs.  The size of the impulses determines the output sizes. 
 

 
 

Figure 9.  Driving force input. 
 

 

 
 

Figure 10.  System response. 
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 Impulses U at times T cause inertial properties within the system to react over time.  
These reactions are represented by exponential rise and fall times with time constants TAU1 and 
TAU2.  They are then superimposed using linear superposition.  Without being able to model 
these inertial effects, their sufficiently long time constants and their superposition, one cannot 
hope to predict the future beyond a single time step. 
 

 As the figures indicate, when an impulse occurs at T = 1, a response does not occur until 
the 3rd time step.  The information, that an impulse has occurred, can be derived from the 
response data up to  T = 12.  A similar response occurs based on the input at T = 15.  All of these 
responses may be superimposed. 
 

 Assuming the model in Figure 10 represents the system with sufficient accuracy, we 
could predict with little error up to 11 time steps into the future.  Furthermore, when the input 
appears to be purely random, so does the response; but this does not preclude us from making 
perfect predictions of the response up to 11 time steps in the future. 
 

 Testing has shown that the delay between actual contraction of the virus and recognizing 
it may take from 2 to 14 days.  Thus we can use 2 days for TD1 and then 14 days for TAU1 + 
TAU2, a total of 16 days.  We have cut TAU2 because of the very small numbers at the end of 
the time constant. This particular distribution provides predictions for 11 days out.  We note the 
difficulty in sample testing to determine these parameters.  Instead, they must be estimated using 
a detailed model as described here. 
 

 Note also that some fraction of the population (typically younger people) may never 
know they have it if not tested.  This latter group represents a significant portion of all those who 
have it, and must be included in the predictions because they may be causing a major part of the 
spread.  Only a portion of those are tested and become part of the data on number of cases 
reported.  This implies that the predictions of all those who have it have no direct measure unless 
a sufficient number of random samples are taken that tests for positive cases to estimate the 
percentage of total cases. 
 

 The incubation period for COVID-19 is thought to extend from 2 to 14 days, with a 
median time of 4 to 5 days from exposure to symptoms onset. One study reports that 97.5% of 
persons with COVID-19 who develop symptoms will do so within 11.5 days of SARS-CoV-2 
infection.  Early estimates predict that the overall COVID-19 Recovery Rate is between 97% and 
99.75%; and also that  Deaths  = .063 * positive tests and  Recoveries = 97 to 99.75% of tested 
positives within 3 to 6 weeks. 
 
TRANSLATING TEST CASES INTO ACTUAL CASES AND BACK 
 

 The test cases defined by the CORONAVIRUS medical community indicate that a test 
case determined positive on day 12 (or 26) as shown in Figure 11 has a probability distribution 
of having been infected between days 1 and 10 (or 15 and 24) days back as shown in Figure 12.  
Because the number of published “TESTED CASES” are accumulated up to the day published, 
one must take the difference between tested cases on two subsequent days to determine the 
number of cases tested positive on the later day. 
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Relation Between Actual Cases And Test Cases 
 

 To determine the ACTUAL CASES for a given day - of which only 20%  (1/5th) of these 
are sufficiently severe to cause testing - one must start with the tested (positive) infections.  One 
must then multiply the tested cases by a factor of 5 to get the total actual cases causing the 
resulting tests. One must then spread that amount back over time using the distribution shown in 
Figure 12 below which provides the probability distribution of contraction on those days in the 
distribution.  Having spread the number of actuals according to this distribution, the sum of the 
distributed actual cases will be 5 time greater than the tested cases used for the distribution.  
Each time a new day of test cases is spread, it adds to the back distribution starting a day later. 
 

 
 

Figure 11.  Test cases at T = 12 and T = 26. 
 
 

 
 

Figure 12.  Back distribution of potential infections of test cases at T = 12 and T = 26. 
 
Translating Back To Test Cases From Day 1 Of Actual Cases 
 

 Starting on day 1 of the actual case distribution illustrated in Figure 12, one must 
translate those actual cases into test cases.  This implies that one must reduce the actuals by a 
factor of 5 and then distribute them into the future as illustrated in Figure 9 above.  If there are 
less than 5 actual cases on a given day, they should be accumulated separately while moving on 
to the next day.  When these accumulated cases add to 5, then a single case must be distributed 
ahead to the test day assuming that the contraction day was in the middle of the contributing 
days. 
 



PREDICTION IN CONTROL SYSTEMS              PAGE   115 

Actual Case Recovery Periods 
 

 People with mild cases (80% of actuals) recover in about 2 weeks.  They are the majority 
(by a factor of 4) and generally have no tests.  Therefore, they must be subtracted from the 
actuals within the two week period after contracting the virus.  This will reduce the daily actuals 
of cases incurred 14 days back.  People with more severe or critical cases (20% actuals) recover 
within 3 to 6 weeks (tested).  These people must also be subtracted from more recent actuals that 
are still infected and can spread it.  All recoveries are immune from future contractions. 
 

 The insertion of actual cases based on the back distribution can provide a reasonable 
estimate of the total cases that existed on each day back.  However it does not provide any 
indication of when those people were infected.  To determine when the infections were incurred, 
one must go back to the first day of stored infections - the starting point of the distribution - and 
assume that this is the first day for people being infected on that day.  Those added after that, i.e., 
any increases that follow, will be the first day for those providing the increase, etc.  Thus, then 
80% of these people can be removed after two weeks. 
 
Deaths 
 

 As another example of the need to examine data at the municipal level, consider the 
numbers in Figure 13 showing COVID-19 deaths in Ocean County, NJ.  Upon dividing the total 
deaths in the county (600) by the population one gets very close to 0.1%.  Only 12 municipalities 
out of 34 have deaths (22 out of the 34 have no deaths) yielding an average of these percentages 
at 0.101%  of the cases (due to all the 0’s).  Because the percentage of deaths is so small for 
individual municipalities, it will be excluded from the change in actuals for a municipality. 
 
CONTROLLING DESIRED BEHAVIORAL OUTCOMES 
 

 How does one come up with the best advice to people when changing government 
positions on behavior and other factors, especially when trying to loosen up the behavioral 
constraints.  This is a real-time control problem, hardly different from guiding missiles.  The first 
element is having accurate data on the current state of the system.  This requires accurate 
estimates of the factors affecting the outcome as well as their use to directly determine the 
outcomes.  For example, one must have an estimate of the state of behavior of people in a given 
municipality.  How much change can be made without throwing the forward movement off the 
desired path?  Depending upon the change, the virus may start back up.  Predicting these 
outcomes can only be done at the municipal level. 
 

 Using the prediction system described here, outcomes based on the changes that political 
leaders want to make can be optimized to maximize the probability that the future direction 
follows the desired course.  As described in examples in Chapter 13, this is hardly different from 
controlling a guided missile in a windy environment.  We must emphasize that, based on much 
prior experience, accurate control of complex systems depends heavily on accurate predictions of 
where they are headed given different choices of controls.  PSI has obtained sufficient data to 
test and prove the accuracy of its municipal model, and expects to be able to offer a copy of the 
PSI model to all counties in the U.S. to run it daily for each of their municipalities.  This will 
require training to use the optimization facilities described in Chapter 9 to track and optimize the 
changing factors affecting each municipality.
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TOWN POPULATION CASES DEATHS % DEATHS
1 Barnegat 23,167 219 11 0.047
2 Barnegat Light 599 2 0 0.000
3 Bay Head 977 6 0 0.000
4 Beach Haven 1191 7 0 0.000
5 Beachwood 11,270 100 0 0.000
6 Berkeley 41,676 542 73 0.175
7 Brick 75,188 982 96 0.128
8 Eagleswood 1,605 8 0 0.000
9 Harvey Cedars 342 0 0 0.000

10 Island Heights 1,667 12 0 0.000
11 Jackson 56,501 760 42 0.074
12 Lacey 28,444 194 9 0.032
13 Lakehurst 2,697 33 0 0.000
14 Lakewood 102,682 2099 128 0.125
15 Lavelette 1,849 10 0 0.000
16 Little Egg Harbor 20,695 124 8 0.039
17 Long Beach Township 3,040 21 0 0.000
18 Manchester 43,418 607 87 0.200
19 Mantoloking 257 0 0 0.000
20 Ocean Gate 2,021 16 0 0.000
21 Ocean Township 9,049 41 0 0.000
22 Pine Beach 2,168 10 0 0.000
23 Plumsted 8,543 53 0 0.000
24 Point Pleasant Beach 4,544 36 5 0.110
25 Point Pleasant  18,651 216 16 0.086
26 Seaside Heights 2,903 30 0 0.000
27 Seaside Park 1,549 8 0 0.000
28 Ship Bottom 1,143 7 0 0.000
29 South Toms River 3,772 73 0 0.000
30 Surf City 1,187 4 0 0.000
31 Stafford 27,012 217 19 0.070
32 Toms River 91,415 1342 106 0.116
33 Tuckerton 3,372 16 0 0.000

594,594 7795 600 0.101

AS OF 5/16/2020

 
Figure 13.  Deaths Relative to Population in Ocean County, NJ 
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A BRIEF REVIEW OF IMPORTANT MODEL ENTITIES 
 
 The following provides a summary of definitions used in the model.  Note the difference 
between cumulative model entities and those for a given day. 
 
Tested Cases 
 

 TESTED_CASES(T) are a cumulative measure of those considered severe versus mild.  
This generally implies that people who anticipated having the virus came to test facilities to be 
tested, and were tested positive.  CASES_TESTED(T) represents those for a given day, i.e., the 
daily difference. 
 
Mild Cases 
 

 Mild cases are generally unreported because they are typically not recognized or simply 
ignored by the affected person and not tested.  MILD_CASES (T) are statistically measured to be 
4 times that of TESTED_CASES(T) which is cumulative.  CASES_MILD (T) is not cumulative. 
 
Total Recoveries 
 

 TOTAL_RECOVERIES(T) are the cumulative total of those who have had it and 
recovered.  Mild cases are statistically measured to recover within two weeks.  Severe (tested) 
cases are statistically characterized and their removal is distributed over 3 to 6 weeks. 
 
Deaths 
 

 TOTAL_DEATHS(T) are cumulative deaths up to T.  The percentage of 
TOTAL_DEATHS(T) is on the order of 10%  of the TESTED_CASES(T)  (and on the order of 
0.10% of the population).  Because deaths are small, they are not tracked directly.  However, 
they are included in the change in actuals for a municipality as described below. 
 
Actual Cases 
 

 ACTUAL_CASES(T) equals the sum: 
 

TESTED_CASES(T) + MILD_CASES(T) - TOTAL_RECOVERIES(T), 
 

a cumulative measure for a given day.  Because ACTUAL_CASES(T) are 5 times larger than 
TESTED_CASES(T), and deaths are replaced by increases in population, deaths are not 
subtracted.  Even though TOTAL_RECOVERIES(T) are small for a give day, they are 
cumulative and become a significant factor in ACTUAL_CASES(T).  By ignoring deaths, they 
are left in the ACTUAL_CASES(T) and therefore removed from the future actuals along with 
the TOTAL_RECOVERIES(T),  
 
 
 



PREDICTION IN CONTROL SYSTEMS              PAGE   118 

 
 
 



PREDICTION IN CONTROL SYSTEMS              PAGE 119 

16. PREDICTION - A BRIEF SUMMARY 
 
 We wish to note the complexity involved in defining and solving the general prediction 
problem.  One is typically trying to predict a vector of observable responses out to some 
maximum number of time steps (horizon) into the future for which predictions are required.  
Typically, complex systems are neither linear, homogeneous, nor stationary, so that an 
understanding of the "mechanics" of the system is necessary to approach such a problem.  In 
practice, one must comprehend these mechanics in order to postulate candidate driving force 
vectors, and then model these mechanics to produce the transformations that relate future values 
of the response to the driving forces.  To accomplish this, one must define the complex spaces 
illustrated in Figure 1-2.  Software implementation requires the ability to represent the complex 
hierarchies required to define these spaces.  It is also necessary to define meaningful distance 
measures to maximize prediction accuracy (minimize prediction error). 
 
 To summarize the results described in the previous chapters, the following tabular 
comparison is offered. 
 
   History Data     Future Data 
 

  Z(1), ..., Z(T)        Z(T+1), ..., Z(T+τ) 
 
 Modeling (Estimation) Error        Prediction Error 
 

  ê+(C, U, Z)          ê-(C, U, Z) 
 

  ê+[Z(T|T), Z(T)]     ê-[Z(T+τ|T), Z(T+τ)] 
 
 Referring to the comparisons above, modeling (estimation) error can be measured using a 
model conditioned on all data up to and including the final measurement time, T.  In the case of 
prediction error, the dynamic model, which is part of the error function, can only be conditioned 
on information up to the current time, T, which is τ steps back from the final measurement. 
 
 When optimizing model parameters to reduce prediction error, a correlation must exist 
between ê- and ê+, to ensure that reducing modeling error implies reducing prediction error.  
Else, the modeler has no criteria for improving a model.  It is clear that determination of this 
correlation can involve substantial amounts of hidden data in order to ensure that the correlation 
test uses true prediction error, i.e., it is based on data the modeler has not yet seen. 
 
   If one simply uses a naive function to fit the history data, it is doubtful that the 
properties of the system will be discovered, no matter how powerful the mathematical techniques 
used to identify or optimize the curve fitting parameters.  However, if a modeler builds a 
structural model based on an understanding of the mechanics of the system, he need only use the 
data to validate his model and measure prediction accuracy.  Furthermore, the likelihood of 
correlation, between modeling error and prediction error, will be much higher. 
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