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INTRODUCTION 
 

 Applications requiring multi-step prediction can be considered an extension of control 
theory.  But other than formulating the equations, a theory of multi-step prediction is generally 
not treated, see [1], [10], and particularly [14].  This is because most work in engineering is 
based on mathematical models using difference or differential equations.  Missile guidance 
systems fall into this category, where controls are typically governed by the smallest time 
constants of interest and depend upon single step prediction.  In these engineering systems, 
prediction is defined in relation to the following functional categories: 
 

• Smoothing - Functions operating at T < 0; 
 

• Filtering    - Functions operating at  T = 0; 
 

• Prediction - Functions operating at  T > 0. 
 

 Current engineering design approaches using single-step prediction focus on filtering to 
estimate the current state of the system.  They do not depend upon predicting multiple steps into 
the future.  Most references to multi-step prediction are outside the field of engineering and not 
based upon scientific principles or experimental results.  Many of these refer to the literature on 
the scientific theories of Filtering and Smoothing, much of which is based on the work of 
Kalman, [11], after whom the famous filter is named.  Sound theoretical work on multi-step 
prediction is scarce.  The resulting misunderstandings have been described by Athens and 
Kendrick, [2], and more precisely by Kalman, [12], regarding confusion between filtering 
(estimation) and prediction. 
 

 Potential applications of multi-step prediction are numerous, see for example [13], [5], 
[6], [7], and [8].  Econometric systems used to make financial decisions are an excellent 
example; however, many are concerned with short-term estimation, see [3].  Others are 
approached using time series analysis, [4], using sophisticated forms of curve fitting, where the 
underlying assumption relies on a complex form of stationarity which may hold for parts of a 
system as shown below.  Weather forecasting is generally treated separately, being interpreted 
based upon individual measures.  To fairly asses the application of multi-step prediction to these 
categories requires that we differentiate between forecasting and prediction. 
 

 Multi-step prediction requires specific measures of accuracy of the system producing the 
predictions, and a characterization of confidence in the measures themselves.  Such measures can 
be difficult to achieve, particularly if there is not sufficient historic data to characterize both the 
error and confidence in the measures.  This is best understood using specific examples provided 
below.  This paper addresses the theory and corresponding measures required when predicting 
outcomes multiple time steps into the future. 
 
†  The authors are with Prediction Systems, Inc., Spring Lake, NJ. 
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MULTI-STEP PREDICTION 
 

 As used here, Multi-Step Prediction implies being able to measure the accuracy of 
predicted outcomes at multiple time steps in the future.  This requires the following: 
 

• Predicted outcomes must be defined in terms of a specified class of possible outcomes. 
 

• A measure of the probability that the predicted outcome will occur - or the probability 
of error - must be produced based on a recent history of prior predictions. 

 

• The probability of error in the prediction statement must be based on data that has not 
been seen by those producing the prediction system. 

 

• The probability of error must be accompanied by a confidence level. 
 
 
Prediction Systems 
 

 Figure 1 contains an illustration of a Prediction System designed to predict the future 
responses of a system whose outputs are observed, see [9].  Design of a prediction system must 
consider those factors affecting the future outcomes of interest from the system being observed.  
Some of these factors are observable and can be used as inputs to drive the prediction system.  
Others that are unobservable may be treated statistically using an estimation subsystem, e.g., a 
Kalman Filter. 
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Figure 1.  Illustration of a Prediction System. 
 
 The purpose of the estimation subsystem is to use all observable data at T, as well as 
statistical estimates of the unobservable factors to produce optimal estimates of the current state 
of the system.  Given the best estimate of the current state of the system, observable inputs 
(driving forces) are used by the prediction subsystem (model) to produce predictions of the 
systems response. 
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 The sequence of residual errors, between predictions and actual system responses are 
used to measure the accuracy of prediction over a Looking Back Horizon, see [9].  The looking 
back horizon must contain a sufficient number of time steps to characterize the confidence level 
in the error probability statement.  If sufficient data and time exist, then a prediction can be made 
whose accuracy is characterized as described above.  If this is not done, then the outputs 
produced are considered a forecast. 
 
 
CHARACTERIZING PREDICTION ACCURACY 
 

 We start by analyzing the distribution of trajectory variations representing potential 
multi-step prediction outcomes as they unfold in time.  Illustrated in Figure 2, such a set of 
distributions must be derived from the history of actual outcomes relative to their predicted 
values.  The more narrow the distribution, the more accurate the prior predictions.  We note that 
as time progresses further into the future, the distributions generally widen. 
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Figure  2.  Prediction of future outcomes characterized by a distribution envelope. 
 
 The area under the distribution curve is used to determine the probability that the 
predicted outcome falls within a specified range.  As an example, the 80% envelope implies that 
the actual outcomes will fall within the specified range with an 80% probability. 
 
 
Specifying A Prediction Envelope 
 

 An example of such an envelope is shown in Figure 3.  It is composed of a sequence of 
weekly intervals for each of the prediction horizons τp = 1, 2, ..., 12.  The prediction statement 
claims that 80% of the time, future outcomes will fall within the specified envelope.  This is 
illustrated in the confidence level characterization in Figure 4. 
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Figure 3.  Prediction of future outcomes characterized by a distribution envelope. 
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Figure 4.  Characterizing the confidence in the prediction statement. 



Prediction Theory                     Page   5  

 To characterize the statistics for the above problem, the following definitions are used. 
 

τp - is the number of future time steps from the current time step to the future time 
horizon for which the system response is being predicted. 

 

τb - is the number of past time steps from, and including, the current time step to the 
looking back horizon, used to define the probability statements. 

 

 n  - is the number of mutually exclusive "τb" sample sets (ensembles) of history data 
available for testing the probability statement. 

 

In other words if N is the total number of sample points (weeks) of history data, then 
 

   
b

N
n = τ  

 

 As models are improved to ensure the truth of an 80% probability statement (as shown in 
Figure 4), there may be certain sample sets of τb weeks for which it is difficult to support an 
80% level.  Decisions on looking back horizons must be made by the producer of predictions to 
ensure acceptance in the market.  Certainly multiple measures can be offered for the same 
predictions. 
 
 
Measuring Confidence in the Prediction Envelope 
 

 From the above we derive the following conclusions.  When making statements about the 
probability that future outcomes will lie within a given envelope, we must pick a specific looking 
back horizon, τb, to test the probability statement.  Next, we must consider all possible sample 
sets from the history data which contain τb contiguous samples.  (There will be N - τb + 1.)  We 
can then plot the distribution of the number of times the actual values fell inside the envelope for 
a given horizon.  See Figure 4. 
 

 Assuming this distribution is representative of the future, we can compute the probability 
that the actuals will fall inside the envelope at least 80% of the time.  This provides a confidence 
statement about the 80% probability envelope.  For example, we might conclude from Figure 4. 
that: 

P{X ≥ 80%}  =  0.95 . 
 
 We note that as  τb → N,  σ →0,  and μ represents the probability statement that would 
be perfectly correct for the entire history.  Conversely, as τb →1,  σ expands so that the 
distribution has finite probabilities at 0 and 100%, and zero probability everywhere else, refer to 
Figure 5.  Ideally, for a τb of reasonable size, we would like to see the standard deviation as 
small as possible.  A small standard deviation would indicate that the probability statement 
varied little from time period to time period.  However, to achieve this may require a large value 
for τb, which the market for predictions may question. 
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Figure 6. Distribution when the looking back horizon, τb, equals one. 
 
 
 A client of the producer of the predictions may point out that the latest predictions are not 
meeting an accurate probability criteria since, over the last 26 weeks, the actual values have 
fallen outside of the τp = 12 prediction interval (farthest out horizon) 6 times.  Therefore, it 
should have been called a 77% envelope (at best) since actuals were outside slightly more than 
23% of the time. 
 

 The producer of the predictions may be concerned that 26 weeks is an insufficient time 
period to characterize the probability statement, and consider longer term records which show 
that actuals have been inside the 12 step prediction interval better than 80% of the time.  In fact, 
at τp = 12, they have been in 81.5% of the time in the prior year in Figure 4. 
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 The client may say that the producer had a great model but, over the past few years, its 
accuracy has degraded.  Since the market is most concerned about current history, a producer 
must consider how to address it.  The first decision to be made is what "looking back" horizon, 
τb, is best used to characterize its probability statement.  The shorter the horizon, the more 
appealing in the market.  After much thought, the producer concludes that it must consider 
horizons on a quarterly basis, and that a single quarter might be watched, but that two quarters 
(26 weeks) is probably the shortest realistic time period from a "statistical" standpoint. 
 

 Our goal is to develop measures of accuracy that also serve to measure consistency of the 
model for small looking back horizons over long periods of history.  This can be accomplished 
using confidence intervals about the prediction envelope boundaries for a given τb.  In general, 
for any given τb, we can determine the confidence level (e.g., 95%) for which we will be inside 
the (80%) envelope.  Assuming that the distribution of points in Figure 4 were normal, then 
maximum consistency can be achieved by minimizing the variance, or the mean absolute 
deviation, given a desired looking back horizon, τb, and probability prediction envelope, e.g., 
80% . 
 
 
A Measure Of Prediction Quality 
 

 Using the above definitions, we can pose a measure of quality of prediction that accounts 
for the actual width of the envelope for a given probability (e.g., 80%), see [9].  The following 
measure applies for a particular forward prediction horizon, τp, and looking back horizon, τb. 
 

    

  
p b

C*P
Q( , ) = 

1 + W
τ τ  

 

where:     - Q is the measure of prediction quality, 
 

    - P is the probability that future values will fall within the envelope at a 
   given τp (80% in the above examples), 
 

    - C is the confidence in the value of the probability statement for a 
   given τb (95% in the above examples), 
 

    - W is the mean normalized width of the envelope, relative to the actual value, 
   at τp. 
 

 Using this measure, quality improves (degrades) with increasing (decreasing) probability 
of being inside the envelope, and with increasing (decreasing) confidence in the probability.  It 
also improves (degrades) as the width of the envelope grows smaller (larger).  As the statement 
of probability of being inside the envelope approaches unity (100%) and the confidence in the 
statement approaches unity (100%), and the width of the envelope approaches zero, quality 
approaches unity, and predictions approach certainty. 
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BUILDING ACCURATE PREDICTION MODELS 
 

 The prediction subsystem in Figure 1 is generally composed of a model of the system 
being observed.  It is the modeler’s task to build models that maximize the accuracy of 
predictions.  This requires applying additional information to condition the probability 
statements.  Additional information can come from observation data, but typically best comes 
from knowledge of how a system operates internally.  We start by characterizing the basic 
properties of dynamic systems. 
 
 
Homogeneous Versus Nonhomogenious Systems 
 

 Time-variant systems may be defined by sets of differential or difference equations.  
These systems may be divided into homogeneous and nonhomogeneous parts.  Homogeneous 
systems are self-contained, i.e., they are not affected by external driving forces that vary 
independently with time.  Normal planetary motion is an example of a homogeneous system.  
Planetary positions can be predicted based upon the internal mechanics of the system itself.  This 
assumes that no external forces affect the planetary system, e.g., large meteorites hitting a planet. 
 

 Homogeneous systems are represented as functions of time.  These representations may 
be complex, but are generally stationary, implying the manner in which they vary with time can 
be identified with sufficient accuracy for the foreseeable future of interest. 
 

 The systems of interest here, e.g., missile guidance, monetary systems, etc., are generally 
nonstationary.  They may have stationary components, but their outcomes are heavily influenced 
by external forces that are nonstationary.  In these cases, one must model how external factors 
act as leading forces that can be observed in advance of the system's response.  This implies 
modeling how inertial properties of one entity affect those of another.  Unless a system has 
inertial properties whose time constants are sufficiently long, there is little chance of predicting 
future responses with useful accuracy.  Given observation data for the driving forces as they 
occur, one must be able to represent the behavior of how they affect the inertial properties of the 
system with sufficient accuracy.  This generally requires a substantial understanding of the 
internal mechanics of the system itself. 
 
 
Modeling The Effects Of External Driving Forces - An Example 
 

 As an example, consider predicting the number of housing completions in a given 
geographical area months in advance.  Such predictions can be used to predict sales of 
appliances, communication systems, furniture, carpeting, etc., purchased after a house is 
complete.  Actual completions can be measured by certificates of occupancy issued in a given 
month.  The most significant factor affecting housing completions is building permits.  These are 
normally taken out many months prior to completion.  We start with an analysis of one month's 
worth of building permits to determine the resulting distribution of completions for those 
permits.  Let's assume that our investigation yielded an average distribution that took on a shape 
as shown in Figure 7.  Then we could model the resulting distribution as shown where the 
number of housing units in the distribution equaled the building permits taken out (or some 
percentage if all did not result in completions).  Figure 8 shows the superposition of housing 
completions due to building permits taken out in months 3 and 10.   
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Figure 7.  Housing units completled in months 6 through 15 as a result of building  
                                 permits in month 1. 
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Figure 8.  Housing units completed in months 8 through 24 as a result of building 
                                 Permits in taken out in months 3 and 10. 
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Modeling Quaisi-Stationary Systems 
 

 Characterizing the properties of statistical stationarity in a complex system also requires a 
substantial understanding of its behavior.  One must separate the internal inertial properties of 
the system from those driven by external forces.  Having done so, identifying models that 
represent the internal stationary components may be achieved only using approaches that go well 
beyond typical tests for stationarity. 
 

 Three years of M1 data, Jan 1981 - Jan 1984, Not Seasonally Adjusted (NSA), are shown 
in Figure 9 where the data appears to be moving up and down more randomly than that which 
would result from the input driving forces.  Clearly one must look for correlation with other 
sources.  Although the data jumps around in what may at first appear to be a random fashion, it 
becomes clear that, after special testing, the up and down movement is correlated with the 
calendar.  Thus we will look for correlation with the calendar.  Figure 10 shows the data behind 
the plot in Figure 9. 
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Figure 9.  Actual curve appears almost random. 
 

 
 The actual data in Figure 10 has all of the “bottom” points highlighted in yellow.  There 
are 12 of these in each year, each occurring at the transition between months.  Four major peaks 
are highlighted in blue.  These peaks occur in the 1st or 2nd week of the beginning of the year.  
Three major “double” peaks are highlighted in red.  These occur the week before and the week 
after April 15th, tax time. 
 

 From the curves, it is clear that a special type of correlation analysis - based upon the 
calendar - is required to determine coefficients that could be used to improve the accuracy of 
predictions so that the width of the 80% envelope is as small as possible. 
 

 Although the data is produced once a week, it is correlated on a monthly and annual as 
well as weekly basis, requiring a special correlation analysis.  These components can be analyzed 
independently, where the time scale with the most correlation can be used to pull out that 
component and redo the correlation analysis on the residual data using the second component. 
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M1 - NSA M1 - NSA
1 Jan 5 1981 430.1 79 Jul 5 1982 451.6
2 Jan 12 1981 423.6 80 Jul 12 1982 3 4 457.4
3 Jan 19 1981 3 4 419.8 81 Jul 19 1982 450.0
4 Jan 26 1981 404.7 82 Jul 26 1982 441.8
5 Feb 2 1981 403.3 83 Aug 2 1982 445.6
6 Feb 9 1981 408.7 84 Aug 9 1982 4 5 454.0
7 Feb 16 1981 3 4 407.4 85 Aug 16 1982 452.4
8 Feb 23 1981 402.6 86 Aug 23 1982 446.7
9 Mar 2 1981 404.5 87 Aug 30 1982 444.8

10 Mar 9 1981 414.3 88 Sep 6 1982 457.5
11 Mar 16 1981 3 5 414.6 89 Sep 13 1982 3 4 464.6
12 Mar 23 1981 408.3 90 Sep 20 1982 459.0
13 Mar 30 1981 409.8 91 Sep 27 1982 445.9
14 Apr 6 1981 429.4 92 Oct 4 1982 461.5
15 Apr 13 1981 3 4 433.9 93 Oct 11 1982 3 4 469.5
16 Apr 20 1981 439.7 94 Oct 18 1982 468.5
17 Apr 27 1981 425.4 95 Oct 25 1982 459.1
18 May 4 1981 423.5 96 Nov 1 1982 465.3
19 May 11 1981 3 4 422.5 97 Nov 8 1982 4 5 476.1
20 May 18 1981 418.9 98 Nov 15 1982 478.3
21 May 25 1981 411.0 99 Nov 22 1982 470.8
22 Jun 1 1981 417.6 100 Nov 29 1982 471.0
23 Jun 8 1981 4 5 424.4 101 Dec 6 1982 483.9
24 Jun 15 1981 427.2 102 Dec 13 1982 3 4 488.0
25 Jun 22 1981 421.3 103 Dec 20 1982 486.0
26 Jun 29 1981 416.4 104 Dec 27 1982 482.9
27 Jul 6 1981 435.0 105 Jan 3 1983 493.2
28 Jul 13 1981 3 4 432.3 106 Jan 10 1983 4 5 497.7
29 Jul 20 1981 427.7 107 Jan 17 1983 486.9
30 Jul 27 1981 419.5 108 Jan 24 1983 472.0
31 Aug 3 1981 425.0 109 Jan 31 1983 467.5
32 Aug 10 1981 4 5 433.5 110 Feb 7 1983 477.9
33 Aug 17 1981 427.2 111 Feb 14 1983 3 4 475.5
34 Aug 24 1981 420.0 112 Feb 21 1983 470.5
35 Aug 31 1981 420.8 113 Feb 28 1983 472.5
36 Sep 7 1981 429.6 114 Mar 7 1983 486.3
37 Sep 14 1981 3 4 436.5 115 Mar 14 1983 3 4 484.9
38 Sep 21 1981 427.5 116 Mar 21 1983 482.3
39 Sep 28 1981 415.7 117 Mar 28 1983 476.3
40 Oct 5 1981 430.6 118 Apr 4 1983 497.5
41 Oct 12 1981 3 4 433.5 119 Apr 11 1983 4 4 504.2
42 Oct 19 1981 432.8 120 Apr 18 1983 502.8
43 Oct 26 1981 423.2 121 Apr 25 1983 492.2
44 Nov 2 1981 428.0 122 May 2 1983 489.1
45 Nov 9 1981 3 5 437.1 123 May 9 1983 497.0
46 Nov 16 1981 437.8 124 May 16 1983 3 5 497.4
47 Nov 23 1981 429.2 125 May 23 1983 490.6
48 Nov 30 1981 435.4 126 May 30 1983 488.6
49 Dec 7 1981 4 4 446.5 127 Jun 6 1983 507.3
50 Dec 14 1981 445.3 128 Jun 13 1983 3 4 509.4
51 Dec 21 1981 447.0 129 Jun 20 1983 505.3
52 Dec 28 1981 445.9 130 Jun 27 1983 494.0
53 Jan 4 1982 462.5 131 Jul 4 1983 510.2
54 Jan 11 1982 461.7 132 Jul 11 1983 3 4 519.9
55 Jan 18 1982 3 4 451.4 133 Jul 18 1983 511.7
56 Jan 25 1982 435.0 134 Jul 25 1983 502.1
57 Feb 1 1982 434.2 135 Aug 1 1983 505.4
58 Feb 8 1982 436.5 136 Aug 8 1983 4 5 513.9
59 Feb 15 1982 3 4 434.5 137 Aug 15 1983 513.0
60 Feb 22 1982 428.0 138 Aug 22 1983 506.1
61 Mar 1 1982 430.1 139 Aug 29 1983 499.7
62 Mar 8 1982 439.0 140 Sep 5 1983 513.3
63 Mar 15 1982 3 5 439.0 141 Sep 12 1983 3 4 519.5
64 Mar 22 1982 432.8 142 Sep 19 1983 513.5
65 Mar 29 1982 429.4 143 Sep 26 1983 501.1
66 Apr 5 1982 449.7 144 Oct 3 1983 510.9
67 Apr 12 1982 4 4 456.9 145 Oct 10 1983 4 5 523.4
68 Apr 19 1982 458.2 146 Oct 17 1983 522.3
69 Apr 26 1982 444.9 147 Oct 24 1983 511.9
70 May 3 1982 439.3 148 Oct 31 1983 509.8
71 May 10 1982 445.4 149 Nov 7 1983 523.5
72 May 17 1982 3 5 441.8 150 Nov 14 1983 3 4 526.1
73 May 24 1982 436.0 151 Nov 21 1983 520.9
74 May 31 1982 438.4 152 Nov 28 1983 517.6
75 Jun 7 1982 451.4 153 Dec 5 1983 529.4
76 Jun 14 1982 3 4 452.8 154 Dec 12 1983 3 4 533.0
77 Jun 21 1982 446.3 155 Dec 19 1983 533.2
78 Jun 28 1982 435.5 156 Dec 26 1983 529.4

157 Jan 2 1984 541.3
158 Jan 9 1984 4 5 551.0
159 Jan 16 1984 536.8
160 Jan 23 1984 520.5
161 Jan 30 1984 508.8

DATE DATE

 
 

Figure 10.  Data used to produce time correlation factors. 
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 To identify calendar correlation on observed data, Z(T), one must perform comparisons 
for a 5 or 7 day week; a 4 or 5 week month; and a 12 month year.  One must also determine how 
to handle transitions when there are holidays, and especially when holidays fall on Friday or 
Monday, the transition at the end of a week, or transitions at the end of a month or year. 
 

 The usual definition of randomness implies no correlation with time, i.e., no 
autocorrelation.  The usual test states that Z(T) is random when the expected value of the inner 
product of the deviates is sufficiently close to zero for all  τ > 0.  We will use the notation: 
 

   Ε{Z(T), Z(T+τ)}  <  δ   ≈  0     for all  τ> 0. 
 

where        Ε{Z(T), Z(T+τ)} = 
TT
1

 • •

TT

T 1
[DZ(T) DZ(T+ )]

=
τ∑  , 

 

              DZ(T) = [Z(T) - μ Z], 
 
and μz is the expected value of Z over the period of interest: 
 

   μz = Ε{ Z(T) } = 
TT
1
 •

TT

T 1
Z(T)

=
∑  . 

 

Since we are dealing with bounded data sets, we will interpret randomness as follows: Z(T) is 
not random if a transformation C can be found such that for some τ > 0, 
 

   E {C[Z(T)],  Z(T+τ)}     ≥    ετ 
 

where ετ is a sufficiently large value based on judgement.  When this is true, Z(T) is predictable 
to some extent up to τ steps into the future.  Otherwise, Z(T) is apparently random.  The word 
"apparently" is used to imply that we can never be sure that a data set is random, i.e., how do we 
know that, if a C cannot be found, one does not exist.  This is best explained by way of example.  
Modeler A uses a standard autocorrelation test and comes up with a value εA  which is less 
than ετ.  Modeler B uses a special "window" to search for autocorrelation and obtains εB  > εA , 
but still less than ετ.  Modeler C uses a special function C which allows for variations in the 
"period of periodicity" of the data, and comes up with εC >> ετ.  (As an example of changing 
periodicity, the product of two periodic functions with different periods will appear aperiodic 
over a bounded time frame).  We would expect model C to provide substantially more accurate 
predictions relative to models A and B. 
 

 The above examples indicate that what one person perceives to be random in time, 
another may determine as having a high degree of order with time.  In other words, there appears 
to be no single measure of randomness for a bounded data set. 
 

 Probably the best example of this phenomenon is encountered in cryptography.  Here one 
creates ciphers using "pseudo" random codes which, when tested by people from whom 
information is to be hidden, appears to be random.  Those having the "key" to decipher the code 
(i.e., they know the transformation C), can retrieve intelligible data which can contain 
information relating to future values of the data set, including new keys. 
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DEFINING THE PREDICTION PROBLEM 
 

 With the framework provided above, we can proceed to define the prediction problem. 
 
 
System Uncertainty 
 

 Based upon the above, we define an uncertain process as follows.  A process, Z(T), is 
said to appear random when no transformation C can be found for which the expected value: 
 

   E [C[Z(T)], Z(T+τ)]    ≥   ετ,     for any τ > 0. 
 

For nonhomogeneous systems, we say that Z(T) is an uncertain process relative to driving force 
vector U(T) when no transformation C can be found such that, for any τ > 0, 
 

   E [C[U(T), Z(T)],  Z(T+τ)]   ≥   ετ  
 

Neither of these statements implies that a C does not exist, only that it has not been found. 
 
 
System Predictability 
 

 We say Z(T) is a predictable process of order τ when a vector of driving forces U and 
transformation C can be found such that for τ > 0, 
 

   E [C[U(T), Z(T)],  Z(T+τ)]  ≥   ετ 
 

We note that a process which appears random by standard statistical tests can be predictable 
since Z(T) can be a delayed function of a purely random process U(T).  This represents a 
generalization of the Markoff Process, being conditioned on (nonhomogeneous) driving forces, 
observed τ states (time steps) back. 
 

 Referring back to Figure 7, we see that the process shown is predictable up to 6 steps into 
the future with potentially little error.  If we attempt predictions 7 steps into the future with this 
model we incur an error, since an impulse at the next (observable) time step will affect the 
response 6 steps in the future.  This is a prediction error due to the inherent order of 
predictability of the system.  This must be distinguished from the model or observation error 
which is generally treated in control theory literature.  We are assuming, of course, that the 
driving force has unpredictable components.  When we construct state equations containing error 
terms, we must incorporate an additional error term beyond those reflecting uncertainty in the 
model and in the data. 
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Modeling or Estimation Error 
 

 The following measure is offered to optimize the choice of U and corresponding 
transformation C.  We want to find C(T) and U(T) such that  
 

   Φ(C, U)   =   D [C[U(T), Z(T)],  Z(T+τ)] 
 

is minimized, where D is some measure of distance (e.g., mean absolute deviation) between the 
predicted response based on the model, 
 

   Z(T+τ)   =   C[U(T), Z(T)]   =   Z(T+τ|T) 
 

and the actual response Z(T+τ).  For example, C and U can be selected to minimize the mean 
absolute error function 
 

 (1)   ê- (C, U, Z)   =   ê [Z (T+τ|T),  Z(T+τ)] 
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)Z(TZ(T)]C[U(T), E  

 

A similar measure would be to minimize the mean square error.  We note that the selection of U 
and C depend, in general, on τ.  In practice, one can select the value of τ most critical to the 
application.  Or, some functional combination of ê- at various values of τ can be used. 
 

 However, once we use (1) as a performance measure in an optimization process, then 
information at  T+τ  has been incorporated into the model.  Therefore, 
 

 (2)  Z(T+τ)  =  C[U(T), Z(T), Z(T+τ)]  =  Z(T+τ|T+τ), 
 

is not a true prediction - it is an estimation - and any future error measure will be of the form 
ê+(C, U, Z). 
 
 
Correlating Prediction Error to Modeling or Estimation Error 
 

 The measure ê used for modeling error can also be used for prediction error.  What is 
important is that the data sets are different.  All data up to the current time T can be used to 
optimize C and U so as to minimize ê+(C, U, Z), providing an optimal estimate.  Future data 
beyond the current time must be used to measure prediction error.  If reductions in modeling 
error do not correlate to reductions in prediction error, then the modeler has no consistent method 
for improving model accuracy in a way that reduces prediction error. 
 

 To summarize, if the same error function, e.g., ê- in (1) above, is used to measure both 
modeling error and prediction error, the difference in the measures is essentially the use of 
previously available data versus the use of unseen “future” data. 
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SUMMARY 
 

 The problem of building structural (versus statistical) models is currently being faced by 
practitioners who are trying to produce more accurate forecasts.  The problem stems from the 
most difficult task of translating knowledge of a system’s structure into a model, and the 
subsequent difficulties in verification and validation of executable computer code.  Because of 
these difficulties, most forecasters fall back on statistical approaches, fitting the data with 
mathematical functions that get extrapolated into the future. 
 

 We wish to note the complexity involved in defining and solving the multi-step 
prediction problem.  One is typically trying to predict a vector of observable responses out to 
some maximum number of time steps (horizon) into the future for which predictions are 
required.  Typically, complex systems are neither linear, homogeneous, nor stationary, so that an 
understanding of the "mechanics" of the system is necessary to approach such a problem.  In 
practice, one must comprehend these mechanics in order to postulate candidate driving force 
vectors, and then model the mechanics to produce transformations that relate future values of the 
response to the driving forces.  To accomplish this, it is necessary to define meaningful distance 
measures to maximize prediction accuracy (minimize prediction error). 
 

 To summarize the results described above, the following tabular comparison is offered. 
 
   History Data     Future Data 
 

  Z(1), ..., Z(T)        Z(T+1), ..., Z(T+τ) 
 
 Modeling (Estimation) Error        Prediction Error 
 

  ê+(C, U, Z)          ê-(C, U, Z) 
 

  ê+[Z(T|T), Z(T)]     ê-[Z(T+τ|T), Z(T+τ)] 
 
 Referring to the comparisons above, modeling (estimation) error can be measured using a 
model conditioned on all data up to and including the final measurement time, T.  In the case of 
prediction error, the dynamic model, which is part of the error function, can only be conditioned 
on information up to the current time, T, which is τ steps back from the final measurement. 
 

 When optimizing model parameters to reduce prediction error, a correlation must exist 
between ê- and ê+, to ensure that reducing modeling error implies reducing prediction error.  
Else, the modeler has no criteria for improving a model.  It is clear that determination of this 
correlation can involve substantial amounts of hidden data in order to ensure that the correlation 
test uses true prediction error, i.e., it is based on data the modeler has not yet seen. 
 

   If one simply uses a naive function to fit the history data, it is doubtful that the 
properties of the system will be discovered, no matter how powerful the mathematical techniques 
used to identify or optimize the curve fitting parameters.  However, if a modeler builds a 
structural model based on an understanding of the mechanics of the system, he need only use the 
data to validate his model and measure prediction accuracy.  Furthermore, the likelihood of 
correlation, between modeling error and prediction error, will be much higher. 
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